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Abstract: Simulation is a popular approach to obtain objective performance indicators on platforms that
are not at one’s disposal. It may help the dimensioning of compute clusters in large computing centers.
In a previous work, we proposed a framework for the off-line simulation of MPI applications. Its main
originality with regard to the literature is to rely on time-independent execution traces. This allows us to
completely decouple the acquisition process from the actual replay of the traces in a simulation context.
Then we are able to acquire traces for large application instances without being limited to an execution on
a single compute cluster. Finally our framework is built on top of a scalable, fast, and validated simulation
kernel.
In this paper, we detail the performance issues that we encountered with the first implementation of our
trace replay framework. We propose several modifications to address these issues and analyze their impact.
Results shows a clear improvement on the accuracy and efficiency with regard to the initial implementation.

Key-words: Performance prediction, MPI, Simulation
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Amélioration de la précision et de l’efficacité
du rejeu de traces indépendantes du temps

Résumé : La simulation est une approche populaire pour obtenir des indicateurs de performance ob-
jectifs sur des plates-formes qui ne sont pas nécessairement accessibles. Elle peut par exemple aider au
dimensionnement d’infrastructures dans de grands centres de calcul. Dans un article précédent, nous
avons proposé un environnement pour la simulation hors-ligne d’applications MPI. La principale origi-
nalité de cet environnement par rapport à la littérature est de ne reposer que sur des traces indépendantes
du temps. Cela nous permet de découpler totalement l’acquisition des traces de leur rejeu simulé effectif.
Nous sommes ainsi capables d’obtenir des traces pour de très grandes instances d’applications sans être
limités à une exécution au sein d’une seule grappe de machines. Enfin, cet environnement est fondé sur
un noyau de simulation extensible, rapide et validé.

Dans cet article nous détaillons les problèmes de performance rencontrés par la première implantation
de notre environnement de rejeu de traces. Nous proposons plusieurs modifications pour résoudre ces
problèmes et analysons leur impact. Les résultats obtenus montrent une amélioration notable à la fois en
termes de précision et d’efficacité par rapport à l’implantation initiale.

Mots-clés : Prédiction de performances, MPI, Simulation

ha
l-0

07
39

08
2,

 v
er

si
on

 1
 - 

5 
O

ct
 2

01
2



Improving Time-Independent Trace Replay 3

1 Introduction

Understanding the performance and behavior of parallel applications relying on the Message Passing
Interface (MPI) on various compute infrastructures is an main concern for many developers. Many tools
exist, such as TAU [14], Scalasca [6], or the joint effort on SCORE-P [1], that provide strong analysis
methods based on profiling to detect performance bottlenecks.

Simulation is another popular approach for predicting the performance of an application. When a
platform is yet to be specified and purchased, simulations can be used to determine a cost-effective hard-
ware configuration appropriate for the expected application workload. Conversely, simulations can also
be used to study the performance behavior of an application by varying the hardware characteristics of an
hypothetical platform. In a classroom setting, students without access to a parallel platform could execute
applications in simulation on a single node as a way to learn the principles of parallel programming and
high-performance computing. Simulation of an application on a platform may also be useful even when
the platform is available. For instance, the simulation may bypass actual computations performed by the
application, and only simulate the corresponding delays of these computations. In this case the simu-
lated application produces erroneous results, but its performance behavior may be preserved. It is then
possible to conduct development activities for performance tuning in simulation only on a small-scale
platform, thereby saving time when compared to real executions on a large-scale platform. Furthermore,
access to large-scale platforms is typically costly (possible access charges to the user, electrical power
consumption). The use of simulation can thus not only save time but also money and resources.

Many simulation frameworks have been proposed over the last decade. They fall into two categories:
on-line simulation, also called simulation via direct execution, and off-line simulation, also called post-
mortem simulation. In on-line simulation the application is executed but part of the execution takes place
within a simulation component. In off-line simulation a trace of a previous execution of the application
is “replayed” on a simulated platform. Most of the existing tools in this category rely on timed traces,
i.e., each traced event is associated to a time-stamp. This approach creates a tight link between the trace
and the set of machines used to produce it. This link is a clear limit to the applicability of the off-
line approach. In [5] we proposed a first prototype of a framework that breaks this link by getting rid
of the time-stamps. This greater flexibility related to the acquisition of traces comes with some issues
of its own. Some were highlighted by the experiments conducted in [5]. First, the acquisition of the
traces is sometimes time-consuming and may, in very specific cases, be close to the execution time of the
application itself. Then, as our framework relies solely on volumes and not on timestamps, it requires
a very accurate measure of hardware counter values, and a minimal impact of the instrumentation. We
noted a certain discrepancy of the measured number of instructions in our first implementation that may
hinder the quality of the simulation results. Finally, while the accuracy of the simulations is very good for
either compute or communication intensive applications, it was not the case for applications that alternate
computations and communications.

This paper is organized as follows. In Section 2 we detail the issues raised by the first prototype
of our off-line simulation framework based on Time-Independent Traces. In Section 3 we present the
different modifications of the framework aiming at addressing these issues. The impact of the proposed
modifications are given in Section 4. We review related work in Section 5. Finally, we draw some
conclusions and detail future work directions in Section 6.

2 Identifying the Issues

In this section, we analyze the performance of our Time-Independent Trace replay framework. We detail
the different issues that raised in the evaluation section of [5]. We reproduce experiments conducted on the
same compute cluster, called bordereau, that comprises 93 2.6 GHz Dual-Proc, Dual-Core AMD Opteron
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4 Desprez & Markomanolis & Suter

2218 nodes interconnected through a single 10 Gigabit switch. Each core has a L2 cache of 1 MB. As
this cluster is now aging and is prone to failures and suspect behaviors, we complement this study with
results obtained on a more recent cluster, called graphene, that comprises 144 2.53GHz Quad-Core Intel
Xeon x3440 nodes. The L2 cache owned by each core is two times larger than on the bordereau cluster.
The nodes are scattered across four cabinets, and interconnected by a hierarchy of 10 Gigabit switches.

2.1 Instrumentation Time Overhead

In our first implementation of a Time-Independent Trace replay framework, we relied on the TAU pro-
filing tool [14] and its Program Database toolkit (PDT) [9] to trace the execution of an MPI application.
We also took advantage of the selective instrumentation feature offered by TAU to focus on specific parts
of the studied application. Using such tools was very convenient as the instrumentation is done auto-
matically. However, the studied application is instrumented at a very fine grain. This may lead to a
non-negligible, overhead on the execution time as shown in [5]. Basically, this overhead is the difference
between the respective execution times of an application with and without instrumentation. As identified
in [11], this overhead has different sources, e.g., intrusion of the measurement mechanisms, building the
complete call path of the application and flushing the trace on disk.

In [5], we measured an overhead ranging from 4.1% to 39.5%, depending on the problem instance,
for the execution of a LU factorization. The largest value was observed for small problem sizes executed
on a large number of compute resources. While this overhead remains acceptable as traces are acquired
once to be replayed multiple times, we aim at reducing it as much as possible. On the graphene cluster,
this overhead ranges from 9.8% to 25.5% in similar conditions. For 128 processes, the overhead increases
to 37.9%.

2.2 Impact of Instrumentation on Hardware Counters Values

A second issue is related to the impact of the instrumentation on the values of the hardware performance
counters used to produce a Time-Independent Trace. In our work, we use the total number of instructions
executed by the studied application. Adding instrumentation probes may increase this value and then
impact the accuracy of a simulation based on the produced trace. To measure the impact of a fine grain
instrumentation such as that done by TAU, we perform the following simple experiment. We execute
two versions of the same application, namely the LU factorization, on the same compute cluster. The
first version is fully instrumented using TAU. In the second version, we just insert calls to get the value
of the hardware performance counter that measures the number of executed instructions at the beginning
and end of the studied section of the code. Figure 1 shows the distribution across processes of the rel-
ative difference in terms of measured numbers of executed instructions between fine and coarse grain
instrumented versions of various instances of the LU factorization. The comparison between the two
executions is done on a per-process basis. Moreover, we ran ten runs of each version and display the
average values. Finally the average total number of instructions per process measured with the coarse
grain instrumentation method is 1.70e11 for the smallest instance (B-8) while it is 8.87e10 for the largest
instance (C-64).These results were obtained on the bordereau cluster.

With the exception of instance B-64, we see that the fine grain instrumentation leads to an increase
of the measured number of instructions of around 10-13%. As our Time-Independent Traces are directly
using these numbers of instructions, such an increase will have a negative impact on the accuracy of the
simulation. In other words, it will likely simulate something closer to the instrumented version than the
original application. The discrepancy becomes even worse when communications start to prevail. This is
the case with the B-64 instance in which the balance between computation and computation changes due
to data distribution.
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Improving Time-Independent Trace Replay 5
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Figure 1: Distribution across processes of the relative difference (in %) of the measured numbers of
executed instructions between fine and coarse grain instrumented versions of various instances of the LU
factorization on the bordereau cluster.

Figure 2 presents similar results but obtained on the more recent graphene cluster. For instances that
involves between 8 and 64 processes, we note a similar discrepancy on this cluster as on the bordereau
cluster. It ranges from 11 to 16%. However, we observe a clear increase of the discrepancy as the number
of processes grows for the Class B instances. For 128 processes, it raises up to 23%. It can easily be
explained as, for such an instance, the rather small input data is highly distributed. Each process thus
only has a really small amount of data to compute on and is more impacted by the instrumentation.

2.3 Calibration and Cache Usage

An essential step to make accurate performance predictions through trace replay is the calibration of the
simulation framework. In our framework, it consists in determining the number of instructions a CPU
can compute in one second and the latency and bandwidth of communication links. Such a calibration
strongly depends on both application and execution environment.

In our first implementation, we chose to do the calibration based on the execution of a small instance of
the studied application. For instance, we consider the A-4 instance to calibrate our tool for the simulation
of larger instances of the LU factorization. The problem there is that the A-4 instance is small enough to
have all data stored in the L2 cache. Then it does not allow us to capture the worse performance achieved
by instances for which the data distribution leads to data movements between L2 cache and main memory.

The instruction rate being one the most important parameter to achieve accurate simulated executions,
we have to define a more complex calibration step to better take cache usage in account.

2.4 Accuracy of the Simulated Execution

In the evaluation of the performance of our off-line simulation framework we conducted in [5], we com-
pared the execution time of various instances of the LU factorization to the simulated time obtained by
replaying Time-Independent Traces (see Fig. 8 in [5]). For such an application that is composed of mil-
lions of interleaved computation and communication actions, the accuracy of the simulated replay was
not as good as expected.
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6 Desprez & Markomanolis & Suter
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Figure 2: Distribution across processes of the relative difference (in %) of the measured numbers of
executed instructions between fine and coarse grain instrumented versions of various instances of the LU
factorization on the graphene cluster.

Figure 3 shows the evolution of the relative error between the time to compute a LU factorization and
its simulated counterpart when the number of involved processes vary. We see that the inaccuracy of the
simulated version is not stable, but increases rather linearly with the number of processes. Moreover, our
tool underestimates the execution time for small number of processes, i.e., when each process owns a
larger share of data, and then overestimates the execution as the number of processes grows.

This inaccuracy may have different origins related either to computations or communications. Such
an inaccuracy may for instance come from the discrepancy of the measured number of instructions that
we just mentioned. Indeed it directly impacts the calibration of the replay tool that determines the rate at
which each machine can process instructions. Among other potential sources, we assume that every part
of the application can be processed at the same rate which may not be the case for some applications,
due to cache affinity for instance. However, the general trend shown by Figure 3 indicates that the main
source of inaccuracy comes from a bad estimation of communication times. The most probable source
might be that the LU factorization, as implemented in the NAS Parallel Benchmark suite, implies a lot of
small messages (less than 64 KiB). Then most of the point-to-point communications use the eager mode
of MPI in which the sender copies the data directly into the memory of the receiver without having to
wait for it to post the corresponding receive. This particular communication protocol was implemented
in a too simple way, based on asynchronous communications for small messages, in the first version of
our framework. As the number of small messages increases with the number of involved processes, small
inaccuracies tend to accumulate and lead to a large overall relative error.

3 Addressing the Issues
In the previous section we have highlighted four issues that all affect the performance and the quality of
our off-line simulation framework. We detail hereafter four approaches to address these issues. The first
lever we use is external to our framework, i.e., leveraging compiler optimizations. The other three imply
modifications of the first implementation presented in [5], i.e., reducing the intrusiveness of the instru-
mentation method, changing the simulation back-end to better handle communications, and improving
the calibration procedure.
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Improving Time-Independent Trace Replay 7
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Figure 3: Evolution with regard to the number of processes of the relative error between execution and
simulated times for the execution of the LU factorization.

3.1 Compiler Optimizations

The first modification we made to our trace acquisition procedure is to activate compiler optimizations,
typically by using the -O3 flag. Turning on an optimization flag makes the compiler attempt to im-
prove the performance and/or code size at the expense of compilation time. Among the optimizations
that may help to reduce the discrepancy in the measured number of instructions are the loop unrolling,
vectorization, and function inlining.

3.2 Less Intrusive Instrumentation Method

As stated in Section 2.1, the default instrumentation provided by TAU leads to some execution time
overhead. The main source of this overhead comes from the building of the complete call path of the in-
strumented application. While this information may be useful to users aiming at identifying performance
bottlenecks in their application, it is useless to our specific usage of the produced traces. Indeed, the only
information required by our Time-Independent Trace replay framework are: (i) the volume of computa-
tion, in number of instructions executed between two MPI calls; (ii) the name and parameters of each
MPI call; and (ii) the volume of data transferred by each communication operation. This is illustrated by
the trace snippet below.

p0 compute 956140
p0 send p1 1240
p0 compute 2110
p0 send p2 1240
p0 compute 3821

The selective instrumentation feature provided by TAU offers us a way to obtain all this required
information, and only it. Then we modify our instrumentation method as follows. First we create a file,
named exclude.pdt, in which we indicate to TAU the list of source files that have to be excluded from
the detailed instrumentation. Actually, we exclude all the source files using the special character *.
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8 Desprez & Markomanolis & Suter

BEGIN_FILE_EXCLUDE_LIST

*
END_FILE_EXCLUDE_LIST

Then, we add the following option to the command line to take this exclusion file into account.

-optTauSelectFile=/path/exclude.pdt

Thanks to this straightforward modification, the instrumentation becomes minimal with regard to
our specific needs. Indeed the performance hardware counter that measures the number of executed
instructions will be triggered when entering and exiting MPI functions. All the information related to
MPI calls, i.e., id of the process that calls this function and the function name and calling parameters, are
traced exactly as in the previous implementation.

We expect this simple modification to have an impact both on the execution time overhead and the
discrepancy of measured numbers of instructions between non-instrumented and instrumented versions
of an application.

3.3 Simulation Back-end
Our simulation framework is is tightly connected to the SIMGrid project [3] that provides core function-
alities for the simulation of distributed applications in heterogeneous distributed environments. SIMGrid
relies on a scalable and extensible simulation engine and offers several user APIs. Our first implementa-
tion of a trace replay mechanism was based on the MSG API that was designed to implement simulators
using Concurrent Sequential Processes (CSP). This choice forced us to mimic the behavior of MPI prim-
itives, e.g., collectives operations or protocols depending on the message size, with some crude simplifi-
cations. More importantly it decouples this effort on the off-line simulation of MPI applications to that
on the on-line simulation of MPI applications also taking place within the SIMGrid project.

In [4], we proposed a new simulator, SMPI, for the on-line approach. It is, as the present off-line
approach, built on top of the simulation kernel of the SIMGrid toolkit and thus also benefits of its fast,
scalable, and validated network models. SMPI extends the existing models with an original piece-wise
linear model to take into account the specifics of the cluster interconnect. A salient property of SMPI is
its capacity to simulate MPI applications on a single node.

We have reimplemented the trace replay mechanism directly within SMPI, instead of on top of the
MSG API. This rewriting leads to many beneficial changes. First, it simplifies the way actions, i.e.,
events stored in the trace are passed to the simulation kernel. To illustrate this, we show the evolution
of the implementation of the action that corresponds to an MPI_Send call. The format of this action is
<id> send <dst_id> <volume>.

static void action_send(const char *const *action){
char to[250];
double size=parse_double(action[3]);

sprintf(to, "%s_%s", MSG_process_get_name(MSG_process_self()), action[2]);

if (size<65536)
action_Isend(action);

else
MSG_task_send(MSG_task_create(NULL, 0, size, NULL), to);

}
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Improving Time-Independent Trace Replay 9

The underlying principle there is to create a mailbox named after the ids of the sender and receiver
processes, create a task that corresponds to the communication of a message, and then send this task into
that mailbox. A matching action on the receiver side, will read the contents of the mailbox and execute
the task, which actually starts the simulated communication. This implementation does not reflect some
the MPI specifics, especially for small messages. Indeed, when the message is smaller than 64KB, the
eager mode is activated. This means that the sender does not have to wait for the receiver to allocate
memory and directly copies the data remotely. We tried to model that by using an asynchronous send for
such small messages. However, it is not what is actually implemented by most MPI runtimes.

Through the analyze of execution traces, we found that an MPI_send for small messages acts in
a sort of “detached” way. From the application point of view, the send corresponds to the time of a
copy of the data in the memory. Moreover, if the receive is issued after the send, the data is already
stored in memory. There again, the application only sees the duration of a memory copy. Modeling this
particular behavior has been done in SMPI. Doing the same in our initial trace replay tool would have
been redundant, error prone, and above all difficult with the MSG API. The new implementation allows
us to benefit of all the complex optimizations offered by SMPI in a seamless way. Indeed the send action
is now:

static void action_send(const char *const *action){
int to = atoi(action[2]);
double size=parse_double(action[3]);

smpi_mpi_send(NULL, size, MPI_BYTE, to, 0, MPI_COMM_WORLD);
}

The second main change implied by this rewriting is the user view of the replay framework. In the
former version everything was exposed to the user. Everything is now embedded and replaying a Time-
Independent Trace with SimGrid simply amounts to run the following program.

int main(int argc, char *argv[]){
smpi_replay_init(&argc, &argv);
smpi_action_trace_run(NULL);
smpi_replay_finalize();
return 0;

}

This code, that initializes some data structures, loads a trace, and destroys the data structures, is
considered as a regular SMPI program. Then it is compiled with the smpicc wrapper and launched
thanks to the smpirun command (see [4] for details), as follow

smpirun -np 8 -hostfile hostfile -platform platform.xml \
./smpi_replay trace_description

where np and hostfile are classical parameters of mpirun. In addition, SMPI requires a de-
scription of the simulated platform, given in the platform.xml file. Our replay tool needs a single
parameter, a file that list the names of the trace files to associate to each process. If this file contains a
single entry, all the processes will look for the actions they have to perform into the same trace.

The last important change is about the format of the recv action. To keep our implementation as
simple as possible, we had to add the message size to the parameters of this action. As we were already
able to track this information in the traces produced by TAU, it required only a small modification of the
existing extraction script.
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10 Desprez & Markomanolis & Suter

3.4 Cache-Aware Calibration Step

As mentioned in Section 2.3, the first implementation of our framework relied on small instances, typ-
ically Class A on 4 processes for the NAS Parallel Benchmark suite, to calibrate the instruction rate of
the simulated platform. The rationale was to limit the number of resources and the time needed to do
the calibration as much as possible. Experiments shown that while using only as few resources as four
cores did not raise any issue, limiting the calibration to a small problem size did hide some important
phenomena.

In the particular case of the LU factorization, as soon as the share of the matrix owned by each process
exceeds the capacity of the L2 cache, the performance drops, with a direct impact on the instruction rate.
To circumvent this issue, we propose to complete our calibration procedure, when it is needed, with runs
on larger problem sizes but on the same number of resources. In practical terms, we run the B-4 and
C-4 instances in addition to the A-4 instance, and thus determine three different instruction rates, one per
studied class. Then, depending on whether the current instance handles data that fit in the L2 cache or
not, we use the rate coming from the A-4 calibration or the one that corresponds to the instance class.

Note that the use of this cache-aware calibration is mandatory only for the bordereau cluster whose
L2 cache is small (1MB per core only). On the graphene cluster that has a L2 cache of 2MB per core, all
the instances do fit in cache. Calibrating the simulator with a run of the A-4 instance is then enough.

4 Impact of the Modifications

Here we evaluate the impact of the modifications detailed in the previous section on each of the issues
identified in Section 2.

4.1 Instrumentation Time Overhead

Two of the proposed modifications have an impact on the overhead implied by the instrumentation of the
application. Applying the -O3 optimization flag transforms the source code and reduces the execution
time of both non-instrumented and instrumented versions of the application. Reducing the instrumenta-
tion to its minimum will reduce its intrusiveness and thus hinder its impact.

Table 1: Evolution on the bordereau cluster of the execution time and overhead of original and instru-
mented versions of instances of the LU factorization between the former implementation in [5] and the
modified implementation (-O3 and minimal instrumentation).

Execution times as in [5] Execution times after modifications
Orig. Instr. Orig. Instr.

B-8 93.05s 98.64s (+6%) 76.55s 86.27s (+13.7%)
B-16 41.49s 47.09s (+13.5%) 35.43s 39.28s (+10.9%)
B-32 23.75s 29.61s (+24.7%) 20.84s 25.43s (+22.02%)
B-64 14.86s 20.73s (+39.5%) 13.71s 17.82s (+30%)

C-8 393s 409.27s (+4.1 %) 356.49s 363.42s (+1.9%)
C-16 193s 210.63s (+9.1 %) 166.6s 186.8s (+12.1%)
C-32 86.95s 104.50s (+20.2%) 73.90s 83.38s (+12.82%)
C-64 46.76s 57.77s (+23.5%) 41.03s 47.76s (+16.4%)
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Improving Time-Independent Trace Replay 11

Table 1 shows the evolution of the execution times of the original application and its instrumented
version between the first implementation presented in [5] and the current one that implements both modi-
fications. Note that the performance achieved by the current implementation may also be impacted by an
update of TAU from version 2.18.3 to version 2.21.1. First, we can note a clear reduction of the execution
times of both non instrumented and instrumented versions, coming mainly from the -O3 optimization
flag. While simple, this optimization is important as it shortens the overall acquisition time of traces.
This gain will become even more interesting for larger problem sizes. If we focus on the evolution of
the instrumentation overhead, we see that the impact of the proposed modifications is not stable. This
overhead actually increases for two instances (B-8 and C-16) and no clear evolution trend can be found.
However, the gain is the most significant for instances that were the most impacted by the instrumentation,
justifying the introduction of this modifications. Over the complete set of instances, the instrumentation
overhead now ranges from 1.9% to 30% instead of the [4.1%-39.5%] range mentioned in Section 2.

As before, we complete the study on the impact of the proposed modification with results obtained on
a more recent compute cluster. We ran experiments with the same initial settings on the graphene cluster,
whose results are shown by Table 2.

Table 2: Evolution on the graphene cluster of the execution time and overhead of original and instru-
mented versions of instances of the LU factorization between the former implementation in [5] and the
current modified implementation (-O3 and minimal instrumentation).

Execution times as in [5] Execution times after modifications
Orig. Instr. Orig. Instr.

B-8 50.96s 58.58s (+14.95%) 40.80s 41.09s (+0.71%)
B-16 27.77s 32.58s (+17.32%) 22.66s 23.26s (+2.61%)
B-32 16.53s 20.11s (+21.26%) 14.04s 14.95s (+6.48%)
B-64 10.24s 12.85s (+25.49%) 8.82s 10.11s (+14.62%)

B-128 7.71s 10.631s (+37.88%) 6.89s 8.76s (+27.14%)

C-8 203.3s 223.13s (+9.84 %) 153.16s 153.40s (+0.16%)
C-16 102.98s 119.62s (+16.16 %) 82.13s 83.14s (+1.23%)
C-32 56.63s 65.80s (+16.2%) 45.91s 47.07s (+2.52%)
C-64 31.69s 37.68s (+18.9%) 26.22s 27.94s (+6.55%)

C-128 23.14 28.32s (+22.39%) 19.45s 22.07 (+13.47%)

As on the bordereau cluster, the use of the -O3 flag has a direct positive impact on the execution
time of the application. But the reduction of the instrumentation overhead is more important there. With
the first implementation of our framework, the overhead goes from 9.8% to 37.9%, which is consistent
with the experiments on the bordereau cluster. The proposed modifications make the overhead range
shrink to [0.7% - 27.1%]. More interestingly, we can see a stable growth of this overhead as the number
of processes increases. As on the bordereau cluster, the improvement is smaller for large number of
processes, but remains significant.

4.2 Impact of Instrumentation on Hardware Counters Values
To measure the impact of the proposed modifications, i.e., applying the -O3 optimization flag and min-
imizing the intrusiveness of the instrumentation, on the discrepancy of the measured number of instruc-
tions, we made the same experiments as in Section 2.2. Figure 4 shows results obtained on the bordereau
cluster.
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Figure 4: Distribution across processes of the relative difference of the measured numbers of executed
instructions between minimal and coarse instrumentations of optimized (-O3) LU instances. Results
obtained on the bordereau cluster.

For most instances, the discrepancy is greatly reduced. Except for the B-64 instance, all are now under
6% while they were around 10-13% before. Moreover, we now see the same evolution as in Figure 2 even
on the bordereau cluster. This means that the discrepancy now becomes really significant only when the
amount of data handled by each process is small. Nevertheless, for the B-64 instance, there is still a
significant reduction from 16% to 12% for the worst difference of measurement between both versions.
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Figure 5: Distribution across processes of the relative difference of the measured numbers of executed
instructions between minimal and coarse instrumentations of optimized (-O3) LU instances. Results
obtained on the graphene cluster.

These results are confirmed on the more recent graphene cluster, as shown by Figure 5. The discrep-
ancy is reduced by at least 5% for all instances, most of them being even close to zero. The modifications
accentuate the discrepancy increase caused by the evolution of the number of processes. But as for the
overhead in terms of execution, instances such as B-128 are not representative of typical executions of
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Improving Time-Independent Trace Replay 13

parallel applications. Indeed, the benefit of distributing the computation comes to its limits for such in-
stances, with too few data to compute on for each process. Consequently results for these instances are
less significant than for instances with a better balance of the computation over communication ratio.

These experiments clearly show the benefits of the proposed modifications on the quality of the in-
strumentation. We expect it to contribute to the improvement of the accuracy of the simulated execution,
studied in the next Section, once combined to a better calibration and the change of simulation back-end.

4.3 Accuracy of the Simulated Execution

In this last set of experiments we combine all the proposed modifications. We rely on the compiler
optimization flag, the minimal instrumentation, and the cache-aware calibration method to improve the
quality of the simulation of the compute part of the application. For the communication part, we ben-
efit of the quality of the underlying SMPI layer that provides good estimations for the point-to-point
communication of small messages and a tuned piece-wise linear network model.

Figure 6 shows the impacts of the whole set of modifications on the accuracy of the simulated execu-
tions of the LU factorization. These results, obtained on the bordereau cluster, have to be compared to
those presented by Figure 3.
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Figure 6: Evolution w.r.t. the number of processes of the relative error between execution and simulated
times for the execution of the LU factorization with the new replay framework. Results obtained on the
bordereau cluster.

The first outcome is a drastic reduction of the inaccuracy. With our initial implementation, the relative
error linearly increased from -2.7% to 38.9% for Class B and from -15.8% to 32.5% for Class C. Now,
the error is comprised between -9.5% and 11.5% for Class B and between -6.1% and 8.1% for Class C.
Moreover, the linear increase of the error along with the number of processes, that indicated a bad sim-
ulation of the communication part, disappeared. We even note an opposite trend for Class B. This can
be explained by the fact that SMPI does not model the time to copy data in memory in the MPI_Send
function yet. This leads to a slight underestimation of the simulation time that increases as more small
messages are exchanged for large number of processes. This phenomenon is well identified and will soon
be addressed.

Figure 7 shows the relative error achieved under the same experimental conditions on the graphene
cluster. As on the bordereau cluster, the error is in a narrow interval ranging from –11.4% and -2%.
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Figure 7: Evolution w.r.t. the number of processes of the relative error between execution and simulated
times for the execution of the LU factorization with the new replay framework. Results obtained on the
graphene cluster.

Results for Class B are even more stable. Again the underestimation of the simulated time should be
compensated by taking memory copy into account.

While narrowing the inaccuracy range is a good result in itself, the more important result shown by
Figures 6 and 7 is the greater stability of this relative error. Indeed, the strong linear increase highlighted
by Figure 3 prevented us to use our framework for its main objective, i.e., predicting the execution time
of any instance of a given application within a certain confidence interval.

The results presented in this section are not perfect yet, as some fluctuations or linear trends are still
there, but there are a great improvement towards an accurate and trustworthy performance prediction tool.
Some issues are still to be addressed, but most of them have been identified. Finally the factorization of
the code, and thus of the efforts with those made on the SMPI project will help to improve the quality of
our Time-Independent Trace replay tool.

5 Related Work

The off-line simulation of MPI application has been used extensively, as shown by the number of trace-
based simulators described in the literature since 2009 [8, 15, 12, 16, 7].

The typical approach is to decompose the trace in time intervals delimited by the MPI communication
operations. The application is thus seen as a succession of computation and communications steps. Most
of the existing tools then simply replace the computations by the measured delays. The performance
differential between the platform used to obtain the trace and the target platform can be taken into ac-
count, but usually using a simple scaling [15, 12, 7]. Network communications are simulated based on
the communication events recorded in the trace and on a simulation model of the network. As for compu-
tation, most of the tools adopt simplistic network models. The most common simplifications are to ignore
network contention because it is known to be costly to simulate [17], and use monolithic performance
models of collective communications rather than simulating them as sets of point-to-point communica-
tions [15, 2]. Exception is the MPI-NetSim on-line simulator [13], which relies on a slow packet-level
discrete event network simulator.
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Improving Time-Independent Trace Replay 15

6 Conclusion and Future Work

Simulation is a popular approach to obtain objective performance indicators platforms that are not at
one’s disposal. It may help the dimensioning of compute clusters in large computing centers. In [5], we
proposed a new approach for the off-line simulation of MPI applications. Instead of relying on logs of
execution that associate an event to a time-stamp, we use Time-Independent Traces as an input of our
simulator. These traces contain only information about volumes of computation and communications.
This allows us to decouple the acquisition process from the replay of the trace. Heterogeneous and
distributed platforms can then be used to get traces without impacting the quality of the simulation,
which is not possible with any other tool. Our simulator is built on top of the SIMGrid toolkit and thus
benefits of its fast, scalable, and validated simulation kernel. We also rely on a well established tracing
tool, TAU, in the acquisition process.

In this paper, we identified several issues, i.e., an instrumentation time overhead, a discrepancy of
the measured number of instructions, a calibration method that ignores some cache related effects, and
an improvable simulation back-end, related to the first implementation of this tool. These issues lead
to inaccurate and unstable simulated times and prevent a use for performance prediction within a con-
fidence interval. We proposed several modifications of our framework to address these different issues
and evaluated their respective impact. While not perfect, the resulting implementation is far more accu-
rate and stable than the previous one, and becomes a good candidate to predict the performance of MPI
applications on platforms that are not available.

This Time-Independent Trace replay framework is freely distributed as part the SIMGrid project
under the LGPL license. It can be downloaded from http://simgrid.gforge.inria.fr/
download.php. The implementation described in this article will be released in the version 3.8 of
SIMGrid. Moreover, the process to acquire a Time-Independent Trace has been fully described in [10].

As future work, we plan to implement the missing feature to model the time taken in sends and
receives to copy data in memory in the eager mode of MPI. We also aim at improving our calibration
method to automatically take cache usage into account and better estimate the instruction rate used by
the simulator. Finally, we would like to assess the performance of the proposed approach on an MPI
application used in production.
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