www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

INTRODUCTION TO SIMULATION ENVIRONMENT FOR EARTH SCIENCES PRACE Advanced Training Centres (PATC) Course 2013-2014

Oriol Jorba, Georges Markomanolis and Kim Serradell

Barcelona, 12-13 December 2013

Course Agenda

((Day 1

- Session 1
 - 9am 9:15am: Reception and presentation of attendants
 - 9:15am 10:30am: Introduction
 - BSC, PRACE and PATC Courses
 - Earth Sciences Modelling
 - 10:30am 11am: Break
 - 11am 12am: Introduction to the HPC environment applied to Earth Sciences
 - HPC environment
 - Models
 - Basic Visualization

(Day 1

- 12am 1pm: Performance analysis of Earth Sciences Models
 - Performance of HPC applications
 - WRF model examples
- 1pm 2pm: Lunch
- Session 2
 - 2pm 3:30pm: HPC Environment Tutorial
 - Filesystem handle
 - Bashrc profile
 - Compilation
 - Job Submission
 - Job Monitoring
 - Basic visualization

(Day 1

- 3:30pm 4pm: Break
- 4pm 6pm: Application cases tutorial
 - Weather Research and Forecasting Modeling System (WRF)
 - Nucleus for European Modelling of the Ocean model (NEMO)
- 6pm: End of first day

Course Agenda

(C Day 2

- Session 3
 - 9am -11am: Visualization and hands-on
 - GrADS, NCL, Python Map Generator
 - 3D visualization (Vapor, Visit)
 - 11am-11:30am: Break
 - 11:30am 1 pm: Analysis packages and hands-on
 - CDO, NCO, R
 - 1pm 2pm: Lunch
- Session 4
 - 2pm 6pm: Practice on HPC environment

Objectives

- (The objective of this course is to cover the main basic topics of HPC environment oriented to Earth Sciences applications.
- (Attendants will learn how to access an HPC facility, install some Earth Sciences models and utilities, run specific test cases, monitoring an execution in batch mode, visualize and analyse the results.

More specifically, the course will cover:

- Basic usage of shell environment, compilers, and parallel programming paradigms (MPI, openMP)
- Build a targeted Earth Science application
- Execution and monitoring of submitted experiment
- Introduction to some commonly used tools to visualize and analyse model outputs

(The students who finish this course will be able to access, build, run, and visualize a collection of Earth Sciences numerical models. Furthermore, the students will gain a general knowledge on Earth Sciences applications within an HPC environment. The course will provide basic HPC skills for future Earth Sciences modellers.

- (At the end of the course, you will be requested to complete a brief questionnaire to evaluate the course:
 - http://events.prace-ri.eu/confDisplayEvaluation.py/display?confld=194

(Presentation of participants, main background, previous HPC experience and interests

(Course expectations

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 1: Overview of BSC, PRACE and PATC course

Outline

(PATC Courses

- The Barcelona Supercomputing Center (BSC)
- The Earth Sciences Department of BSC
- The PRACE Project and PATC Courses

Barcelona Supercomputing Center – Centro Nacional de Supercomputación (BSC-CNS) is the Spanish National Laboratory in supercomputing.

The BSC mission:

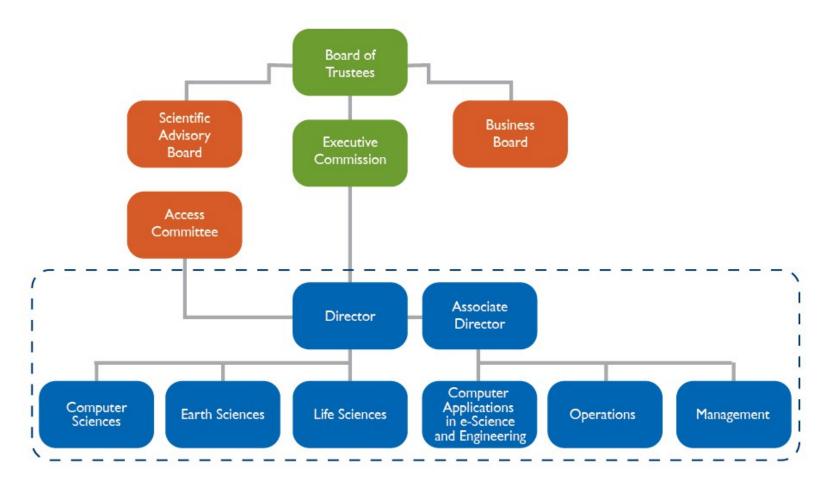
To investigate, develop and manage technology to facilitate the advancement of science.

The BSC objectives:

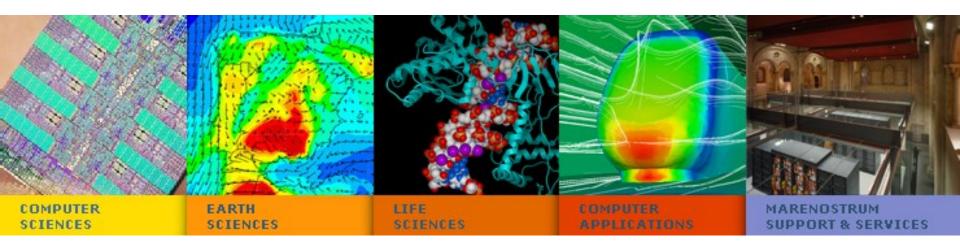
- To perform R&D in Computer Sciences and e-Sciences
- To provide Supercomputing support to external research.

BSC is a consortium that includes:

- the Spanish Government 51%
- the Catalan Government 37%
- the Technical University of Catalonia 12%



BSC Organization


The BSC is a fusion of a classic Scientific Support Structure and a classic Research Institute.

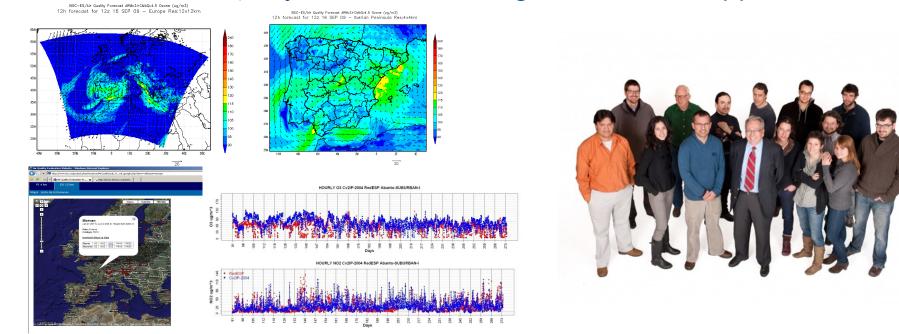
BSC Scientific & Technical Departments

www.bsc.es

BSC Current Resources

- MareNostrum 2013
 - 48448 Intel SandyBridge-EP cores
 - 1 PFlops
- MinoTauro 2011
 - 128 compute nodes
 - 182 TFlops

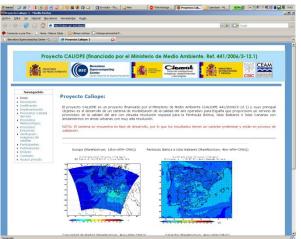
- HPC Storage and Backup:
 - 2.5 PB disk
 - 6.0 PB tapes Robot



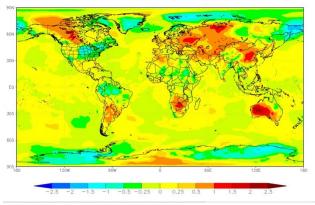
BSC in Spain

Earth Sciences Department (www.bsc.es/earth-sciences)

(Research in the Earth Sciences area is devoted to the development and implementation of regional and global state-of-the-art models for short-term air quality forecast and long-term climate applications.



(CES maintains two daily operational systems: AQF CALIOPE and MD forecasts: BSC-DREAM8b and NMMB/BSC-CTM.


Earth Sciences research lines

Air Quality Forecast

Climate change modelling

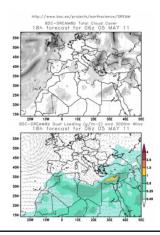
GISS ModelE at BSC-CNS Surface Temperature Anomaly C (1951-1980) Year 1956, BAU scenario - Global Res:2x2.5

Atmospheric modelling: development of NMMB/BSC-CTM

Transfer technology (EIA and AQ studies)

WMO SDS WAS [AEMET-BSC]

WMO Sand and Dust Storm Warning and Assessment System (SDS WAS)


 To enhance the ability of participating countries to establish and improve systems for forecasting and warning to suppress the impact of Sand and Dust Storm

by

 Establishing a coordinated global network of Sand and Dust Storm forecasting centers delivering products useful to a wide range of users in understanding and reducing the impacts of SDS

Mineral dust transport: BSC-DREAM8b

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Partnership For Advanced Computing in Europe (PRACE) Project www.prace-ri.eu

April, 23rd 2010 creation of the legal entity (AISBL) PRACE with seat location in Brussels, Belgium

25 PRACE Members

67+ Million € from EC FP7 for preparatory and implementation phases

Grants INFSO-RI-211528, 261557, and 283493 Complemented by ~ 50 Mio€ from PRACE members And 400Mio€ by Hosting Members

Supercomputing Center Centro Nacional de Supercomputación

Tier-0 Petaflop-Capability in PRACE


BlueGene/P PRACE@Jülich

Bull Cluster Curie PRACE@GENCI:

2012: BlueGene/Q PRACE@(CINECA & Jülich)

CRAY HERMIT PRACE@HLRS

Centro Nacional de Supercomputación

IBM SuperMUC PRACE@LRZ

IBM in 2012 PRACE@BSC 20

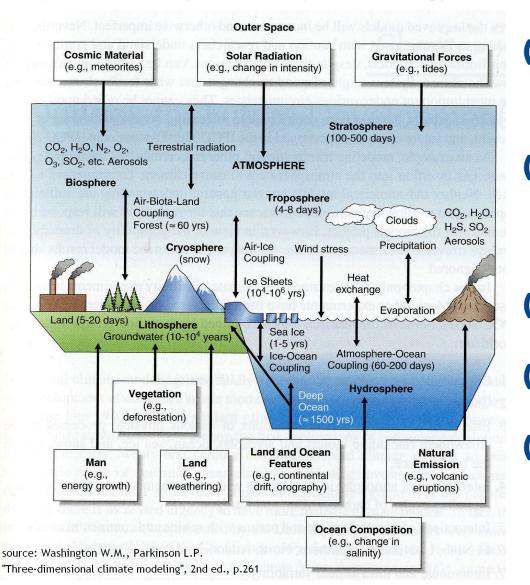
PRACE Training Courses

(PRACE, the Partnership for Advanced Computing in Europe (www.praceri.eu), has selected six of its members' sites: Barcelona Supercomputing Center (Spain), CINECA - Consorzio Interuniversitario (Italy), CSC - IT Center for Science Ltd (Finland), EPCC at the University of Edinburgh (UK), Gauss Centre for Supercomputing (Germany) and Maison de la Simulation (France) as the first PRACE Advanced Training Centres.

(The mission of the PRACE Advanced Training Centres (PATCs) is to carry out and coordinate training and education activities that enable the European research community to utilise the computational infrastructure available through PRACE. The long-term vision is that such centres will become the hubs and key drivers of European highperformance computing education.

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 1: Introduction to Earth Sciences Modeling


Outline

- (The Earth system and impacts
- (How do we model atmospheric processes?
- (Examples of numerical modelling results
- (Developments at the Earth Sciences Department of BSC

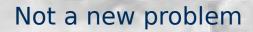
The Earth System

Readapted from: www.metoffice.gov.uk/research/hadleycentre/models/climate system.html

Atmosphere: circulation, the heat transfer to and from the sun, formation of clouds and atmospheric reactive flows that determine the concentrations of its chemicals.
 Ocean: interaction of ocean and atmosphere through exchange of momentum, heat and water. The ocean is a heat sink and it is a medium of transport of energy from continent to continent.

- Land: vegetation, man and soil play an important role in terms of air dynamics and chemicals transport.
 - **Cryosphere:** snow, ice and sea-ice influence on the large-scale circulation.
 - **Biosphere:** life on earth and in the water has an important impact on the CO2 cycle.

Impacts of atmospheric processes

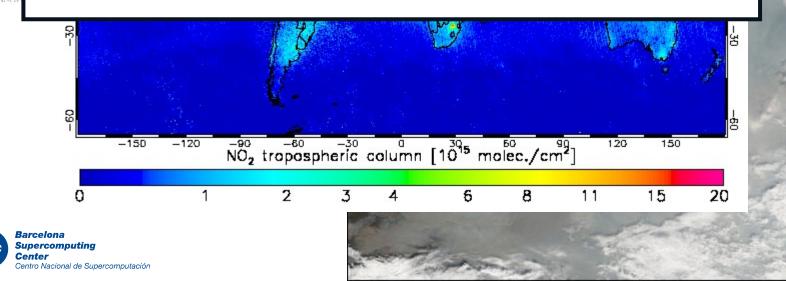


Extreme weather events include droughts, floods and associated landslides, storms, cyclones and tornadoes, ocean and coastal surges, heat waves and cold snaps.
Barcelona Supercomputing

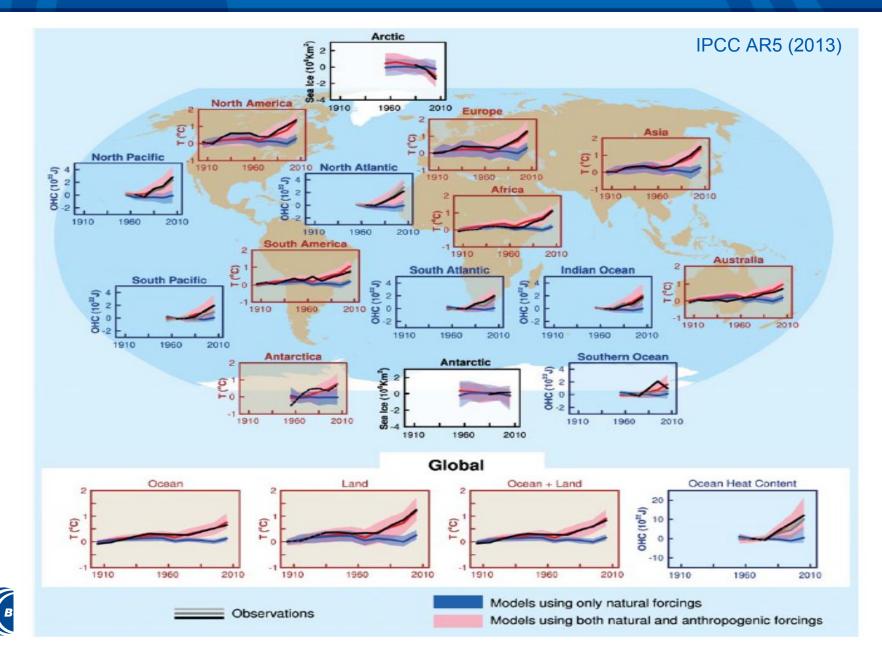
Impacts of anthropogenic activities

Madrid (Spain)

ulder (USA)


Air Pollution: Europe, South China, the Earth

OMI trop. NO₂ Feb. 2008 -150 -120 -90 -60 -30 0 30 60 90 120 150 -150 -120 -90 -60 -30 0 30 60 90 120 150


(Effects of air pollution:

29 March

- It can cause illness and even death.
- It damages buildings, crops, and wildlife.
- It has a strong impact in visibility
- Impact on climate system

Impact on Climate

So, what can we do?

(Understanding the mechanisms that lead to extreme weather and air pollution episodes

- Measurement campaigns
- Chemical experiments: smog cambers
- Modelling techniques

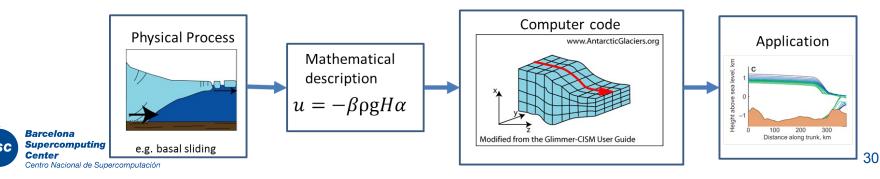
To provide information and guidance to the authorities
 Information to the population, policy makers

Image: Comparison of the second se

 Towards the chemical weather forecast and the Earth System Models

Models: from theory to numerics

(Physical model


 Reproduction at smaller scale of a process (e.g., wind tunnels and reproduction of buildings).

(Mathematical model

Set of mathematical equations with physical basis that describes a specific process.

(Numerical model

Computer program where the mathematical model is discretized and codified.

Types of numerical models

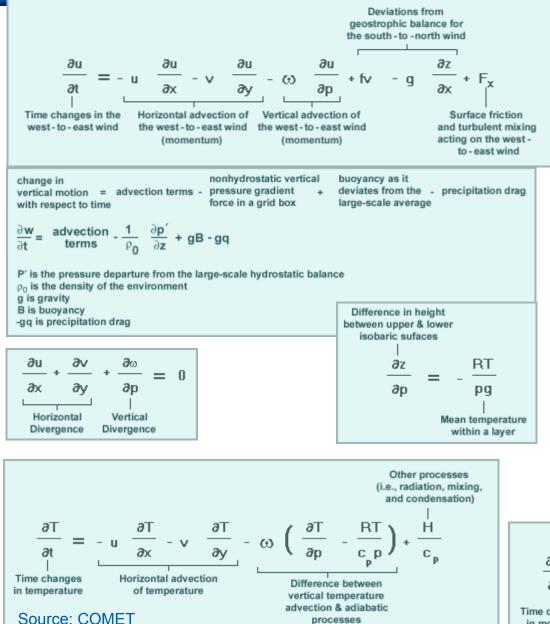
(Spatial scale

- Street canyon
- Local models
- Mesoscale models
- Synoptic or regional models
- Global models

(Temporal scales

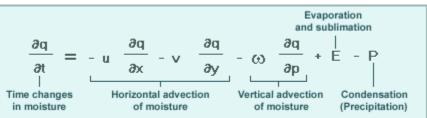
- Short-term
- Long-term or climate models

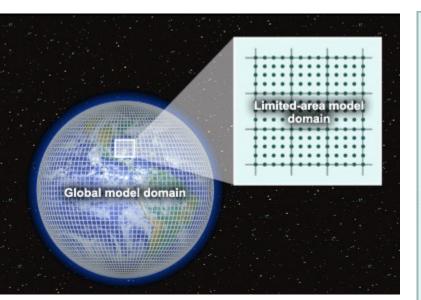
(Past or future scenarios

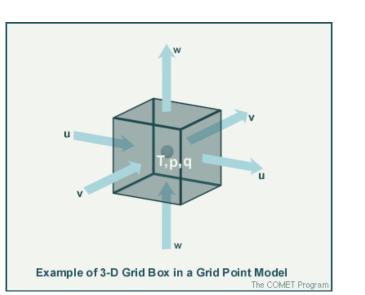

- Hindcast
- Nowcast
- Forecast
- Climate projections

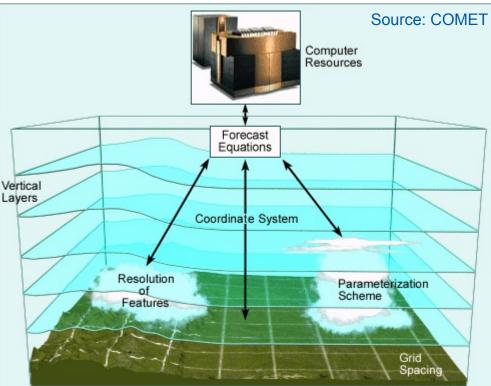
(Reference framework:

- Box model
- Gaussian model
- Lagrangian model
- Eulerian model

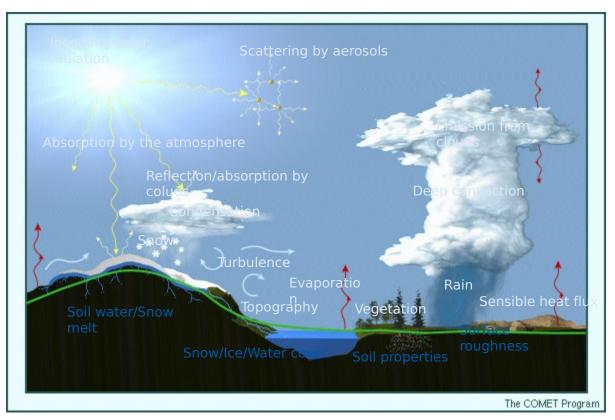

How do we model the evolution of the atmosphere? Meteorological models – Climate models


Resolving the full compressible primitive equations: *Momentum conservation Mass conservation Energy conservation Moisture conservation*

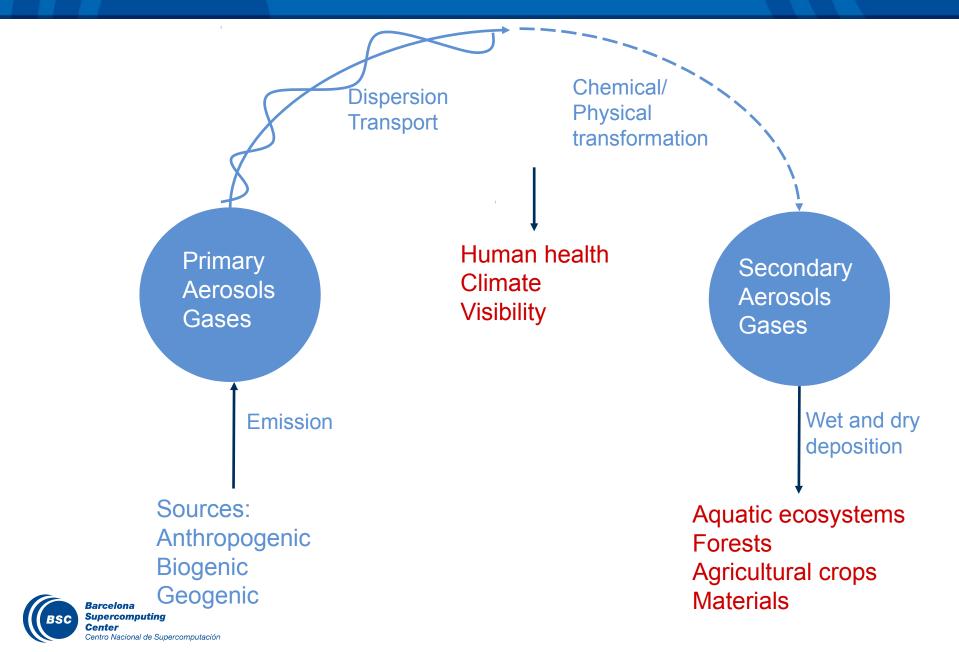

Partial Differential Equations


No analytic solution available: need of numerical approximations

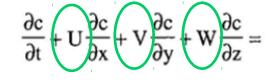
Where do we solve the primitive equations? Grid discretization

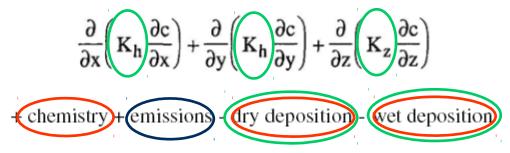


High performance computing resources:


If we plan to solve small scale features we need higher resolution in the mesh and so more HPC resources are required.

(Parameterization: account for unresolved grid scale processes.


Atmospheric chemistry and Air pollution processes



How do we model air pollution and atmospheric

(The dispersion equation:

 Advection, diffusion, reaction-chemistry, emissions and deposition

Meteorology

Emissions

Chemistry

- C concentration of pollutant
- Kh lateral diffusion coefficient
- Kz turbulence exchange coefficient

The chemical term

Deaction

Reaction Number	Reaction	Rate Consta	nt, <i>k</i> †	Note				
	Inorganic Chemistry						Accession of the second se	
(1)	$NO_2 + h\nu \xrightarrow{O_2} NO + O({}^3P)$	J_{NO_2}	Reaction Number	Reaction	Rate Const	ant ht	Note	
(2) (3)	$NO_3 + h\nu \longrightarrow 0.89NO_2 + 0.89O(^3P) + 0.11NO$ $HNO_2 + h\nu \longrightarrow OH + NO$	J _{NO₉} J _{HNO₂}	rannoer		Rate Collisi	ant, a	14000	
(4)	$HNO_3 + h\nu \longrightarrow OH + NO_2$	J _{IINO3}		Carbonyl Chemistry				
(5) (6)	$HNO_4 + h\nu \longrightarrow HO_2 + NO_2$ $O_3 + h\nu \longrightarrow O(^3P)$	JHNO4	(50)	$HCHO + h\nu \xrightarrow{O_2} 2IIO_2 + CO$	JHCHOR		13,18	
(7)	$O_3 + h\nu \longrightarrow O(T)$ $O_3 + h\nu \longrightarrow O(^4D)$	J _{O3a} J _{O3b}	(51)	$HCHO + h\nu \rightarrow CO$	Jиспоь		13,18	
(8)	$H_2O_2 + h\nu \longrightarrow 2OH$	$J_{H_2O_2}$ 3.2 × 10 ⁻¹¹ exp (7((52)	$HCHO + OH \xrightarrow{O_2} HO_2 + CO$	1.0×10^{-11}	Reaction		
(9) (10)	$O(^{1}D) + O_{2} \longrightarrow O(^{3}P) + O_{2}$ $O(^{1}D) + N_{2} \longrightarrow O(^{3}P) + N_{2}$	$3.2 \times 10^{-11} \exp(70$ $1.8 \times 10^{-11} \exp(11)$	(53)	$HCHO + NO_3 \xrightarrow{O_2} HNO_3 + HO_2 + CO$	$3.4 \times 10^{-13} \exp(-$	Number	Reaction	Rate Constant, k^{\dagger}
(11)	$O(^{1}D) + H_{2}O \longrightarrow 2OH$	2.2×10^{-10}	(54) (55)	$ALD2 + h\nu \xrightarrow{2O_2} CH_3O_2 + HO_2 + CO$ $ALD2 + OH \longrightarrow C_2O_3$	J_{ALD2} 5.6 × 10 ⁻¹² exp (2			
(12)	$O(^{3}P) + O_{2} \xrightarrow{M} O_{3}$	F(6.0(-34), 2.3, 0.0		$ALD2 + OR \xrightarrow{O_2} C_2O_3$ $ALD2 + NO_3 \xrightarrow{O_2} C_2O_3 + HNO_3$	$1.4 \times 10^{-12} \exp(2$		Organic Hydroperoxides	
(13) (14)	$O({}^{3}P) + O_{3} \longrightarrow O_{2} + O_{2}$ $O({}^{3}P) + NO_{2} \longrightarrow NO$	$8.0 \times 10^{-12} \exp(-6.5 \times 10^{$	(56) (57)	$ALD_2 + NO_3 \longrightarrow C_2O_3 + HNO_3$ $AONE + h\nu \xrightarrow{2O_2} C_2O_3 + CH_3O_2$		(86) (87)	$CH_3OOH + h\nu \xrightarrow{O_2} HCHO + HO_2 + OH$ $ETHOOH + h\nu \longrightarrow ALD2 + HO_2 + OH$	J _{CH3OOH}
(14) (15)	$O(P) + NO_2 \xrightarrow{M} NO_3$ $O(^3P) + NO_2 \xrightarrow{M} NO_3$	F(9.0(-32), 2.0, 2.2	(57)	$AONE + h\nu \longrightarrow C_2O_3 + CH_3O_2$ $AONE + OH \longrightarrow ANO2$	J_{AONE} $T^{2}5.3 \times 10^{-18} \text{ ext}$	(87)	$ROOH + h\nu \longrightarrow ALD_2 + HO_2 + OH$ $ROOH + h\nu \longrightarrow OH + 0.4XO_2 + 0.74AONE + 0.3ALD_2$	same as reaction (86) same as reaction (86)
(15)	$O(^{3}P) + NO_{2} \xrightarrow{M} NO_{2}$	F(9.0(-32), 1.5, 3.0	(59)	$MGLY + h\nu \longrightarrow C_2O_3 + CO + IIO_2$	9.64 × JHCHUA	(00)	+ 0.1ETHP $+ 0.9$ HO ₂ $- 1.98$ PAR	,
(17)	$O_3 + NO \longrightarrow NO_2$	$2.0 \times 10^{-12} \exp(-$	(60)	$MGLY + OH \longrightarrow XO_2 + C_2O_3$	1.7×10^{-11}	(89)	$CH_3OOH + OH \longrightarrow 0.7CH_3O_2 + 0.3HCHO + 0.3OH$	$3.8 \times 10^{-12} \exp (200/T)$
(18)	$O_3 + NO_2 \longrightarrow NO_3$	$1.2 \times 10^{-13} \exp(-1.6 \times 10^{-12} \times 10^{-12} \exp(-1.6 \times 10^{-12} \times 10^{-12} \exp(-1.6 \times 10^{-12} \exp(-1.6 \times $	(61)	$MGLY + NO_3 \longrightarrow HNO_3 + C_2O_3 + CO$	$1.4\times10^{-12}(-$	(90) (91)	ETHOOH + OH $\rightarrow 0.7ETHP + 0.3ALD2 + 0.3OH$ ROOH + OH $\rightarrow 0.77RO_2 + 0.19MGLY + 0.04ALD2$	$3.8 \times 10^{-12} \exp (200/T)$ $3.8 \times 10^{-12} \exp (200/T)$
(19) (20)	$O_3 + OH \longrightarrow HO_2$ $O_3 + HO_2 \longrightarrow OH$	$1.0 \times 10^{-14} \exp(-1.1 \times 10^{-14} \exp(-1.1 \times 10^{-14}))$		Olefin chemistry	- H - S	(91)	+ 0.23OH - 0.42PAR	$3.8 \times 10^{-10} \exp(200/T)$
(21)	$OH + H_2 \longrightarrow HO_2 + H_2O$	5.5 × 10 ⁻¹² exp (-	(62)	ETH $ O_3 \rangle$ HCHO + 0.22HO ₂ + 0.12OH + 0.24CO + 0.24CO ₂ + 0.52HCOOH	$1.2 \times 10^{-14} \exp(-$		Organic Nitrates	
(22)	$OH + NO \xrightarrow{M} HNO_2$	F(7.0(-31), 2.6, 3.6)	(63)	$+ 0.24CO_2 + 0.52HCOOH$ ETH + OH $\rightarrow XO_2 + 1.56HCHO + HO_2 + 0.22ALD2$	F(1.0(-28), 0.8, 8)	(92)	$ONIT + OH \longrightarrow NAP$	$1.6 \times 10^{-11} \exp(-540/T)$
(23)	$OH + NO_2 \xrightarrow{M} HNO_3$	F(2.5(-30), 4.4, 1.6) 2.2 × 10 ⁻¹¹	(64)	$OLET + O_3 \longrightarrow 0.57HCHO + 0.47ALD2 + 0.33OH$	$4.2 \times 10^{-15} \exp(-$	(93)	ONIT + $h\nu \rightarrow NO_2$ + 0.41XO ₂ + 0.74AONE + 0.3ALD2 + 0.1ETHP + 0.9HO ₂ - 1.98PAR	JONIT
(24) (25)	$OH + NO_2 \longrightarrow HO_2 + NO_2$ $OH + HNO_2 \longrightarrow NO_2$	$1.8 \times 10^{-11} \exp(-$		$+ 0.26HO_2 + 0.08H_2 + 0.07CH_3O_2 + 0.06ETHP$		(94)	$C_2O_3 + NO_2 \longrightarrow PAN$	F(9.7(-29), 5.6, 9.3(-12), 1.5)
(26)	$OH + HNO_3 \xrightarrow{M} NO_3$	$k_{\pi} + [M]k_{h}/(1 + [A$		$+ 0.03 RO_2 + 0.13 C_2 O_3 + 0.04 MGLY + 0.03 CH_3 OH$ + 0.06 CH ₄ + 0.01 C ₂ H ₆ + 0.31 CO + 0.22 CO ₂		(95)	$PAN \longrightarrow C_2O_3 + NO_2$	$k_{94}1.1 \times 10^{28} \exp(-14000/T)$
()		$k_a = 7.2 \times 10^{-18} \text{ e}$		+ 0.22HCOOH + 0.09RCOOH - 1.06PAR			Alkyl and Acyl Peroxy Radical Che	mistry
		$k_b = 1.9 \times 10^{-33}$ e: $k_c = 4.1 \times 10^{-16}$ e:	(65)	$OLEI + O_3 \longrightarrow 1.03ALD2 + 0.07AONE + 0.60OII$	$8.9 \times 10^{-16} \exp(-$	(96)	$CH_3O_2 + NO \longrightarrow HCHO + HO_2 + NO_2$	$3.0 \times 10^{-12} \exp (280/T)$
(27)	$OH + HNO_4 \longrightarrow NO_2$	$1.3 \times 10^{-12} \exp{(38)}$		$+ 0.22HO_2 + 0.10CH_3O_2 + 0.05ETHP + 0.09RO_3$ + 0.11ANO ₂ + 0.19C ₂ O ₃ + 0.07MGLY		(97) (98)	ETHP + NO \longrightarrow ALD2 + HO ₂ + NO ₂ RO ₂ + NO \longrightarrow 0.16ONIT + 0.84NO ₂ + 0.34XO ₂	$2.6 \times 10^{-12} \exp (365/T)$ 4.0×10^{-12}
(28)	$OH + HO_2 \longrightarrow H_2O + O_2$	$4.8 \times 10^{-11} \exp (25)$		$+ 0.04 CH_3 OH + 0.08 CH_4 + 0.01 C_2 H_6$		(96)	$+ 0.62AONE + 0.25ALD2 + 0.08ETHP + 0.76HO_2$	4.0 × 10
(29)	$OH + H_2O_2 \longrightarrow HO_2$	$2.9 \times 10^{-12} \exp(-$		+ 0.30CO + 0.18CO ₂ + 0.16RCOOH - 2.26PAR			- 1.68PAR	
(30)	$HO_2 + HO_2 \xrightarrow{M} H_2O_2$		(66)	$OLET + OH \longrightarrow XO_2 + HO_2 + HCHO + ALD2 - PAR$ $OLEI + OH \longrightarrow XO_2 + IIO_2 + 0.23AONE + 1.77ALD2$	$5.8 \times 10^{-12} \exp (4)$ $2.9 \times 10^{-11} \exp (2)$	(99)	$C_2O_2 + NO \xrightarrow{O_9} CH_2O_2 + NO_2 + CO_2$	$5.3 \times 10^{-12} \exp (360/T)$
		$k_s = 1.7 \times 10^{-30}$ e:	(67)	-2.23PAR	2.3 × 10 exp (2	(100)	$ANO2 + NO \longrightarrow NO_2 + C_2O_3 + HCHO$	4.0×10^{-12}
(31)	$HO_2 + HO_2 + H_2O \xrightarrow{M} H_2O_2$	$k_{30} \times 1.4 \times 10^{-21}$	(68)	$OLET + NO_8 \longrightarrow NAP$	$3.1 \times 10^{-13} \exp(-$	(101)	$NAP + NO \longrightarrow 1.5NO_2 + 0.5HCHO + 0.5ALD2$ + 0.5ONIT + 0.5HO ₂ - PAR	4.0×10^{-12}
(32)	$HO_2 + NO \longrightarrow OH + NO_2$ $HO_2 + NO_3 \xrightarrow{M} HNO_4$	$3.5 \times 10^{-12} \exp{(25)}$	(69)	$OLEI + NO_3 \longrightarrow NAP$ Aromatic Chemistry	2.5×10^{-12}	(102)	ISOPP + NO $\rightarrow 0.09$ ONIT + 0.91 NO ₂ + 0.91 HO ₂	4.0×10^{-12}
(33) (34)	$HO_2 + NO_2 \longrightarrow HNO_4$ $HO_2 + NO_2 \longrightarrow HNO_2$	F(1.8(-31), 3.2, 4.7) 5.0×10^{-16}	(70)	TOL + OH $\rightarrow 0.08XO_2 + 0.2HO_2 + 0.12CRES$	$2.1 \times 10^{-12} \exp{(3)}$		+ 0.63 HCHO + 0.91ISOPRD + 0.18PAR	10
(35)	$HNO_4 \xrightarrow{M} HO_2 + NO_2$	$k_{33} \times 4.76 \times 10^{26} \epsilon$	(14)	$+ 0.8 TO_2$		(103)	ISOPN + NO \rightarrow NO ₂ + 0.8ALD2 + 0.8ONIT + 0.8HO ₂ + 0.2ISOPRD + 0.2NO ₂ + 1.6PAR.	4.0×10^{-12}
(36)	$NO_3 + NO \rightarrow 2NO_2$	$1.5 \times 10^{-11} \exp(17)$	(71)	XYL OH $\rightarrow 0.5$ XO ₂ + 0.55HO ₂ + 0.8MGLY	$1.7 \times 10^{-11} \exp(1$	(104)	$ISOPO_2 + NO \longrightarrow NO_2 + HO_2 + 0.59CO + 0.55ALD2$	4.0×10^{-12}
(37)	$NO_3 + NO_2 \longrightarrow NO + NO_2$ $NO_3 + NO_2 \xrightarrow{M} N_2O_5$	$4.5 \times 10^{-14} \exp(-10^{-14})$	(72)	+ 1.1PAR. + $0.45TO_2$ + 0.05CRES TO ₂ + NO $\rightarrow 0.95(NO_2 + OPEN + HO_2)$ + 0.05ONIT	8.1×10^{-12}		+ 0.25HCHO + 0.34MGLY + 0.63AONE	
(38) (39)	$NO_3 + NO_2 \longrightarrow N_2O_5$ $NO_3 + NO_3 \longrightarrow 2NO_2 + O_2$	F(2.2(-30), 3.9, 1.5) 8.5 × 10 ⁻¹³ exp (-	(73)	$CRES + OH \rightarrow 0.4CRO + 0.6XO_2 + 0.6HO_2$	4.1×10^{-11}	(105)	$XO_2 + NO \longrightarrow NO_2$	4.0×10^{-12} 1.1×10^{-12}
(40)	$NO_3 + HO_2 \longrightarrow .3HNO_3 + .7NO_2 + .7OH$	3.5×10^{-12}		+ 0.30PEN		(106) (107)	$CH_3O_2 + NO_3 \longrightarrow HCHO + HO_2 + NO_2$ $ETHP + NO_3 \longrightarrow ALD2 + HO_2 + NO_2$	1.1×10^{-12} 2.5×10^{-12}
(41)	$N_2O_5 + H_2O \longrightarrow 2HNO_3$	2.0 × 10 ⁻²¹	(74) (75)	$CRES + NO_3 \rightarrow CRO + HNO_3$ $CRO + NO_3 \rightarrow ONUT$	2.2×10^{-11} 1.4×10^{-11}	(108)	$RO_2 + NO_3 \longrightarrow NO_2 + 0.4XO_2 + 0.74AONE + 0.3ALD2$	2.5×10^{-12}
(42)	$N_2O_5 \xrightarrow{M} NO_3 + NO_2$ $NO + NO + O_2 \xrightarrow{O_2} 2NO_2$	$k_{38} \times 3.7 \times 10^{26}$ es 3.3 × 10 ⁻³⁹ exp (53	(76)	$CRO + NO_2 \longrightarrow ONIT$ $OPEN + OH \longrightarrow XO_2 + C_2O_3 + 2CO + 2HO_3 + HCHO$	1.4×10^{-11} 3.0×10^{-11}		+ 0.1ETHP + 0.9HO ₂ - 1.98PAR	
(43)	$NO + NO + O_2 \xrightarrow{\longrightarrow} 2NO_2$ $CO + OH \xrightarrow{O_2} HO_2$	3.3×10^{-13} exp (53 $1.5 \times 10^{-13}(1 + .6)$	(77)	$OPEN + h\nu \longrightarrow C_2O_3 + CO + HO_2$	9.04 × JHCHON	(109)	$C_2O_3 + NO_3 \longrightarrow CH_3O_2 + NO_2$	4.0×10^{-12}
(44) (45)	$O_2 + OH \longrightarrow HO_2$ $O_2 + OH \longrightarrow H_2O_4 + HO_2$	F(3.0(-31), 3.3, 1.5)	(78)	$OPEN + O_3 \longrightarrow 0.03ALD2 + 0.62C_2O_3 + 0.7HCHO$	$5.4 \times 10^{-17} \exp(-$	(110) (111)	$ANO2 + NO_3 \longrightarrow NO_2 + C_2O_3 + HCHO$ $NAP + NO_3 \longrightarrow 1.5NO_2 + 0.5HCHO + 0.5ALD2$	1.2×10^{-12} 4.0×10^{-12}
()	Paraffin Chemistry			$+ 0.69CO + 0.08OH + 0.03XO_2 + 0.76HO_2 + 0.2MGLY$		(111)	$+ 0.50NIT + 0.5HO_2 - PAR$	
(46)	CII ₄ + OII $\xrightarrow{O_2}$ CH ₃ O ₂	$T^{0.667}2.8 \times 10^{-14}$	()	Isoprene Chemistry		(112)	$XO_2 + NO_3 \longrightarrow NO_2$	2.5×10^{-12}
(40) (47)	$C_{2}H_{0} + OH \longrightarrow ETHP$	$T^2 1.5 \times 10^{-17} \exp$	(79) (80)	ISOP + OH \rightarrow ISOPP + 0.08XO2 ISOP + O ₃ \rightarrow 0.6HCHO + 0.65ISOPRD + 0.27OH	$2.55 \times 10^{-11} \exp(1.2 \times 10^{-14} \exp(1.2$	(113)	$CH_3O_2 + HO_2 \longrightarrow CH_3OOH$	$3.8 \times 10^{-12} \exp(800/T)$
(48)	$PAR + OH \longrightarrow RO_2$	8.1×10^{-13} $6.7 \times 10^{-12} \exp(-$	(ev)	$+ 0.07CO + 0.39RCOOH + 0.07HO_2 + 0.15ALD2$	1.2 × 10 cxb ((114) (115)	ETHP + HO ₂ \implies ETHOOH RO ₂ + HO ₂ \implies ROOH	$7.5 \times 10^{-13} \exp{(700/T)}$ $1.7 \times 10^{-13} \exp{(1300/T)}$
(49)	$CH_3OH + OH \longrightarrow HCHO + HO_2$	$6.7 \times 10^{-**} \exp(-$		$+ 0.2 XO_2 + 0.2 C_2 O_3$		(116)	$C_2O_3 + HO_2 \longrightarrow 0.4(RCOOH + O_0)$	$4.5 \times 10^{-13} \exp(1000/T)$
T	he chemical mas	honior	(81)	$ISOP + NO_3 \longrightarrow ISOPN$	$3.0 \times 10^{-12} \exp(-$	(117)	$ANO2 + HO_2 \longrightarrow ROOH$	$1.2 \times 10^{-13} \exp(1300/T)$
	he chemical mec	allist	(83)	ISOPRD + OH $\rightarrow 0.5C_2O_3 + 0.5ISOPO_2 + 0.2XO_2$ ISOPRD + $O_3 \rightarrow 0.27OH + 0.1HO_2 + 0.11C_2O_3$	3.3×10^{-11} 7.0 × 10 ⁻¹⁸	(118)	$NAP + HO_2 \longrightarrow ONIT$	$1.7 \times 10^{-13} \exp(1300/T)$
			(00)	$+ 0.07 \text{XO}_2 + 0.05 \text{CH}_3 \text{O}_2 + 0.16 \text{CO} + 0.15 \text{HCHO}$	1.0 X 10	(119) (120)	$ISOPP + HO_2 \longrightarrow ROOH$ $ISOPN + HO_3 \longrightarrow ONIT + 2PAR$	$1.7 \times 10^{-13} \exp (1300/T)$ $1.7 \times 10^{-13} \exp (1300/T)$
			10.13	+ 0.02ALD + 0.09AONE + 0.85MGLY + 0.46RCOOH	2 C	(120) (121)	$ISOPO_2 + HO_2 \longrightarrow ROOH$	$1.7 \times 10^{-10} \exp(1300/T)$ $1.7 \times 10^{-10} \exp(1300/T)$
		- 1	(84)	$ISOPRD + h\nu \rightarrow 0.97C_2O_3 + 0.33HO_2 + 0.33CO$	JISOPRD		$XO_2 + HO_2 \rightarrow$	$1.7 \times 10^{-13} \exp(1300/T)$

+ 0.28HCHO + 0.93ONIT + 0.28ALD2

 $+ 0.93 HO_2 + 0.93 XO_2 + 1.86 PAR$

(122)

(123)

(124)

(125)

(126)

(127)

(128)

 1.0×10^{-15}

 $\mathrm{CH_3O_2} \ \longrightarrow 0.66\mathrm{HCHO} + 0.32\mathrm{HO_2} + 0.34\mathrm{CH_3OH}$

 $RO_2 \longrightarrow 0.24XO_2 + 0.21ALD2 + 0.57AONE + 0.06ETHP$

ANO2 $\rightarrow 0.7(C_2O_3 + HCHO) + 0.15(MGLY + AONE)$

 $NAP \rightarrow 0.5(NO_2 + HCHO + ALD2 + ONIT) - PAR$

 $\mathrm{ETHP} \longrightarrow 0.8 \mathrm{ALD2} + 0.6 \mathrm{HO}_2 + 0.2 \mathrm{C}_2 \mathrm{H}_8$

+ 0.54HO₂ - 1.25PAR

 $C_2O_3 \longrightarrow CH_3O_2 + CO_2$

 $XO_2 + HO_2 \longrightarrow$

Note

11.18

9,11

9,11

1,11

9,11

9,11

11,1211,18

1,13

1,13

1,11

1,11 8,11

1,10 8,11 8,11 8,15 8,15 8,15 8,13 7,11 7,11 7,11 8,11 8,11 8,11 7,11

1,11

1,11

8,11

1.10

8,11

8,11

8,15

8,15

8,15

8,11

11,16

11,16

11.16

11.16

11.16

11,16

11,16

 $1.7 \times 10^{-13} \exp(1300/T)$

 $k_i^{(1)}, i = CH_3O_2$

 $k_i^{(1)}$, i = ETHP

 $k_i^{(1)}, i = RO_2$

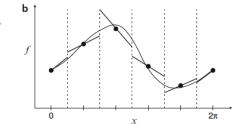
 $k_{i}^{(1)}, i = C_{2}O_{3}$

 $k_{i}^{(1)}, i = ANO2$

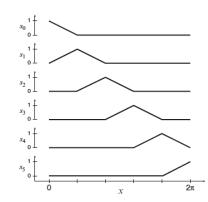
 $k_{i}^{(1)}, i = NAP$

Parameterized Rermutation Reactions

Ordinary differential equation of the state of the state

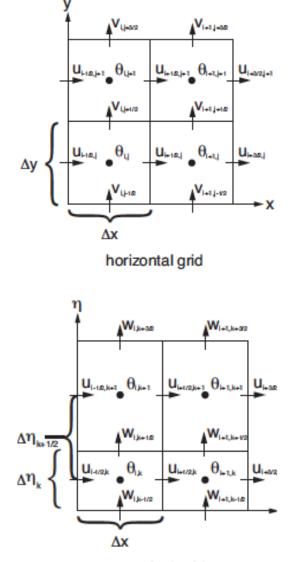


Numerical approaches


- Computers are not designed to solve differential equations directly
- (Approximating Calculus with Algebra

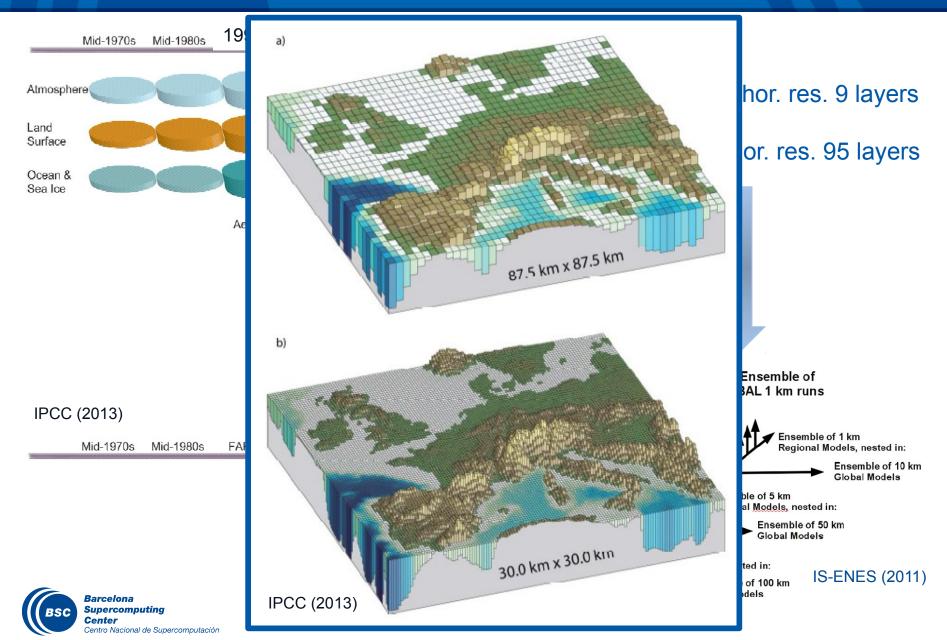
- Finite differences
$$\frac{df}{dx}(x_0) \approx \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}$$

- Finite volumes $f(x) \approx f_j + \sigma_j (x - j\Delta x)$

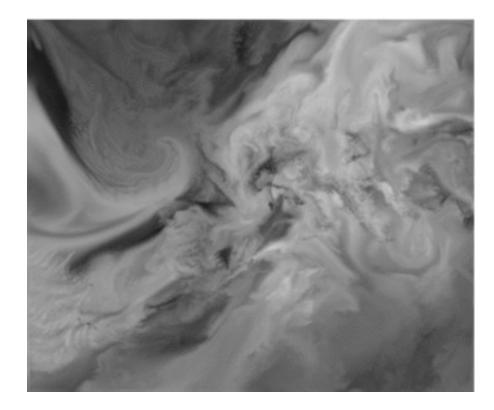

- Spectral transforms $a_1 + a_2 \cos x + a_3 \sin x + a_4 \cos 2x + a_5 \sin 2x$
- Finite elements $b_0 s_0(x) + b_1 s_1(x) + \dots + b_5 s_5(x)$

Finite differences: Discretization in space

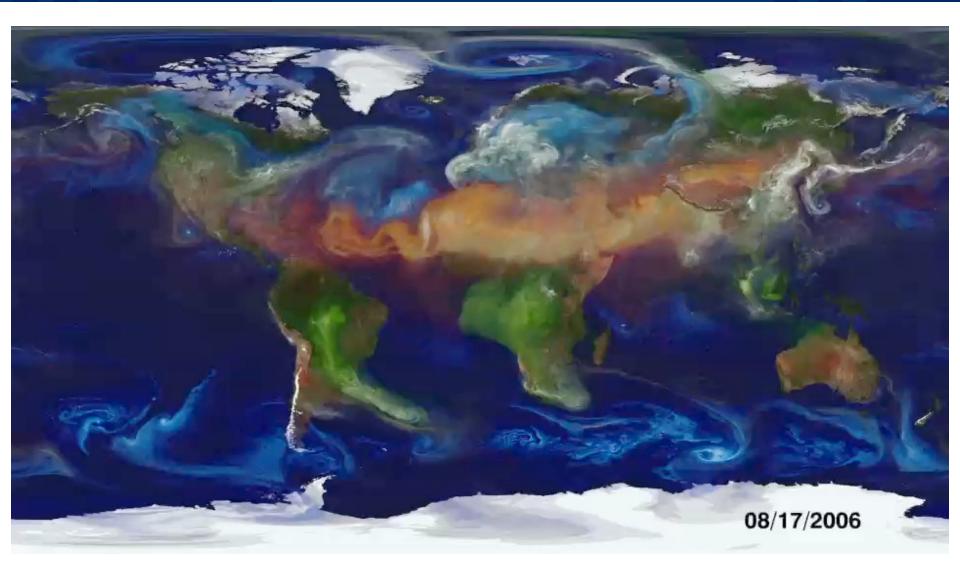
Order	m	9	Approximation
(a) First-order backward	1	2	$rac{\partial N}{\partial x} pprox rac{N_i - N_{i-1}}{\Delta x}$
(b) First-order forward	1	2	$rac{\partial N}{\partial x}pprox rac{N_{i+1}-N_i}{\Delta x}$
(c) Second-order central	1	3	$rac{\partial N}{\partial x}pprox rac{N_{i+1}-N_{i-1}}{2\Delta x}$
(d) Second-order backward	1	3	$\frac{\partial N}{\partial x} \approx \frac{N_{i-2} - 4N_{i-1} + 3N_i}{2\Delta x}$
(e) Second-order forward	1	3	$rac{\partial N}{\partial x} pprox rac{-3N_i + 4N_{i+1} - N_{i+2}}{2\Delta x}$
(f) Third-order backward	1	4	$\frac{\partial N}{\partial x} \approx \frac{N_{i-2} - 6N_{i-1} + 3N_i + 2N_{i+1}}{6\Delta x}$
(g) Third-order forward	1	4	$\frac{\partial N}{\partial x} \approx \frac{-2N_{i-1} - 3N_i + 6N_{i+1} - N_{i+2}}{6\Delta x}$
(h) Fourth-order central	1	5	$\frac{\partial N}{\partial r} \approx \frac{N_{i-2} - 8N_{i-1} + 8N_{i+1} - N_{i+2}}{12\Delta r}$
(i) Fourth-order backward (I)	1	5	$\frac{\partial N}{\partial x} \approx \frac{-N_{i-3} + 6N_{i-2} - 18N_{i-1} + 10N_i + 3N_{i+1}}{12\Delta x}$
(j) Fourth-order forward (I)	1		$\frac{\partial N}{\partial x} \approx \frac{-3N_{i-1} - 10N_i + 18N_{i+1} - 6N_{i+2} + N_{i+3}}{12\Delta x}$
(k) Fourth-order backward (II)	1		$\frac{\partial N}{\partial x} \approx \frac{-3N_{i-4} + 16N_{i-3} - 36N_{i-2} + 48N_{i-1} - 25N_i}{12\Delta x}$
(l) Fourth-order forward (II)	1		$\frac{\partial N}{\partial x} \approx \frac{25N_i - 48N_{i+1} + 36N_{i+2} - 16N_{i+3} + 3N_{i+4}}{12\Delta x}$
(m) Second-order central			$\frac{\partial^2 N}{\partial x^2} \approx \frac{N_{i+1} - 2N_i + N_{i-1}}{\Delta x^2}$
(n) Fourth-order central	2		$\frac{\partial x^2}{\partial x^2} \approx \frac{\Delta x^2}{-N_{i-2} + 16N_{i-1} - 30N_i + 16N_{i+1} - N_{i+2}}{12\Delta x^2}$


vertical grid

Finite differences: Discretization in time


$$\begin{array}{lll} \frac{\partial u}{\partial t} &= f(u,t) & \begin{array}{lll} \mbox{Forward Euler} & \frac{U_{n+1} - U_n}{\Delta t} = f(U_n,t_n) & \mbox{is} & U_{n+1} = U_n + \Delta t \, f_n \\ & \mbox{Backward Euler} & \frac{U_{n+1} - U_n}{\Delta t} = f(U_{n+1},t_{n+1}) & \mbox{is} & U_{n+1} - \Delta t \, f_{n+1} = U_n \\ & \mbox{Trapezoidal rule/Crank-Nicolson} & \frac{U_{n+1} - U_n}{\Delta t} = \frac{1}{2}(f_{n+1} + f_n) \\ & \mbox{Many discretization} \\ & \mbox{options with} \\ & \mbox{different stability,} \\ & \mbox{accuracy and cost} & \mbox{Backward differences} & \frac{3U_{n+1} - 4U_n + U_{n-1}}{2\Delta t} = f(U_{n+1},t_{n+1}) \\ & \mbox{Wams-Bashforth}^m & \frac{U_{n+1} - U_n}{\Delta t} = \frac{3}{2}f(U_n,t_n) - \frac{1}{2}f(U_{n-1},t_{n-1}) \\ & \mbox{Runge-Kutta} & \frac{U_{n+1} - U_n}{\Delta t} = \frac{1}{3}(k_1 + 2k_2 + 2k_3 + k_4) \\ & \mbox{$k_1 = \frac{1}{2}f(U_n,t_n)$} \\ & \mbox{$k_2 = \frac{1}{2}f(U_n + \Delta t \, k_1,t_{n+1/2})$} & \mbox{$k_3 = \frac{1}{2}f(U_n + \Delta t \, k_2,t_{n+1/2})$} \\ & \mbox{$k_4 = \frac{1}{2}f(U_n + 2\Delta t \, k_3,t_{n+1})$} \end{array}$$

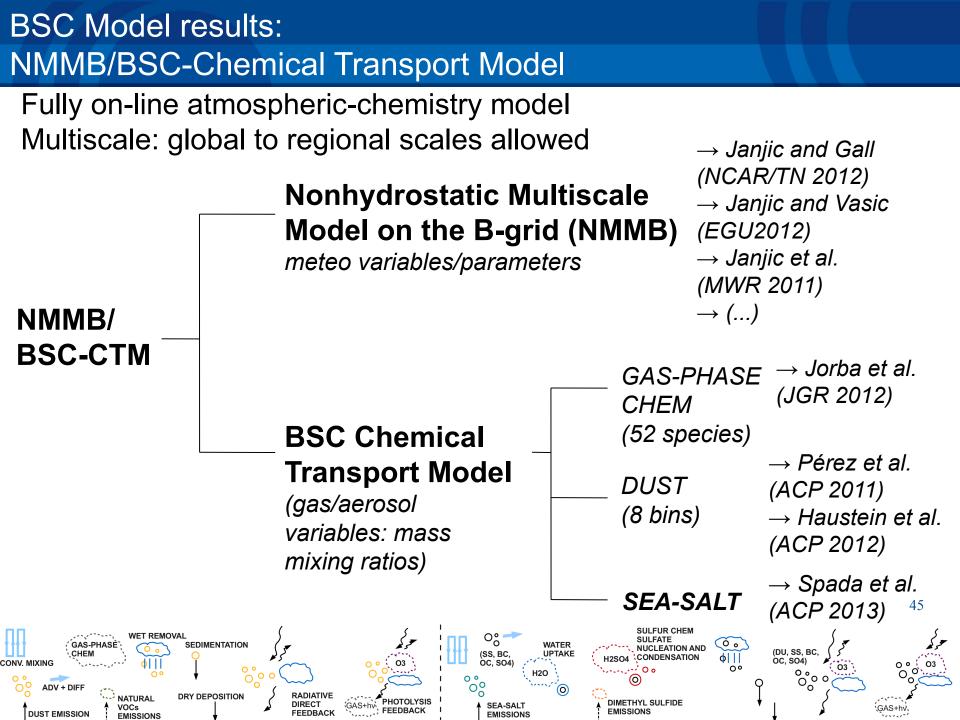
Historical evolution of climate models



Water vapor meteorological simulation

Global aerosol simulation

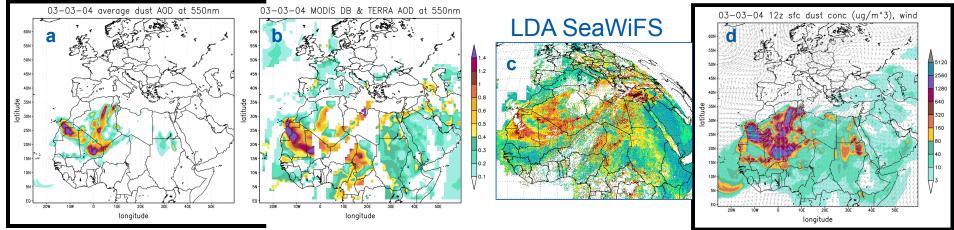
Barcelona Supercomputing Center Centro Nacional de Supercomputación

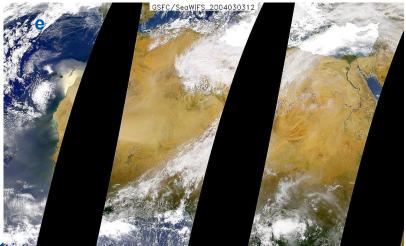

Source: NASA GSFC

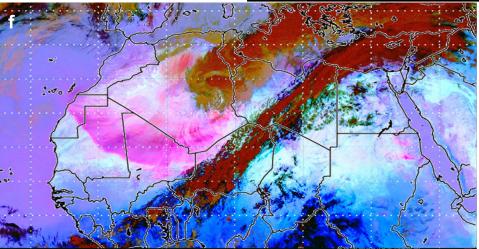
Climate change simulations – EC-Earth

(EC-Earth 2 m temperature projection

(C-Earth Sea Ice coverage projection

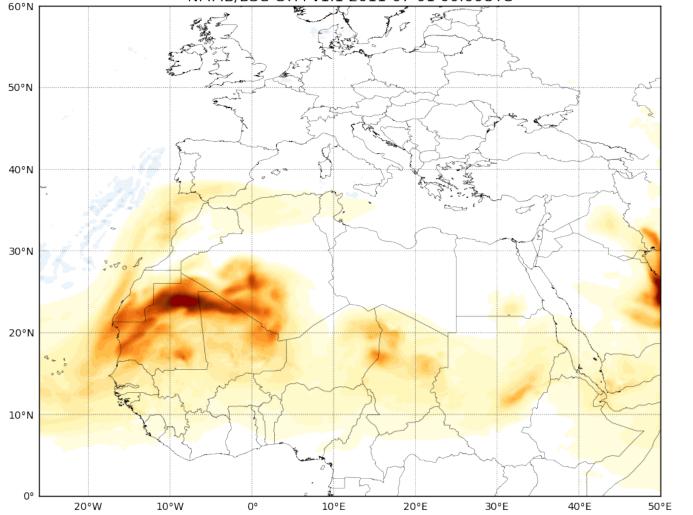


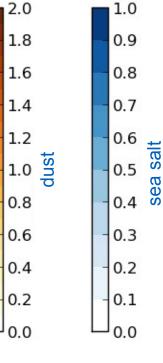



BSC model results: NMMB/BSC-CTM

- Global and regional annual simulations evaluated with:
 - Aeronet sun-photometer networks
 - LIDAR vertical profiles

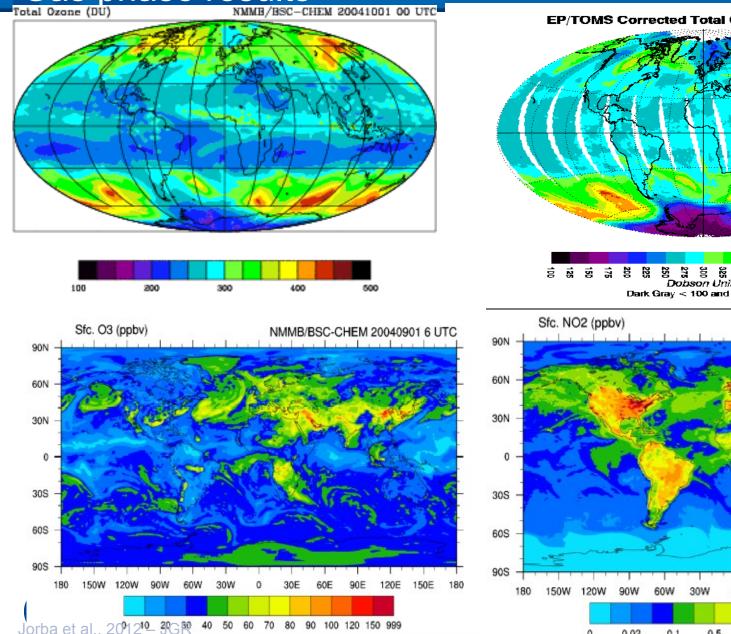
- Several satellite products
- Surface concentrations
- Emission and deposition fluxes

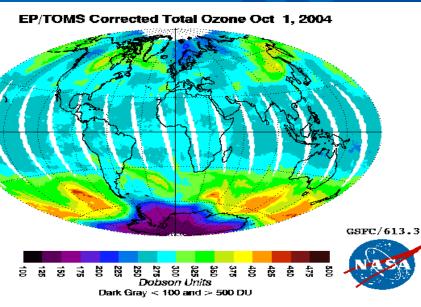


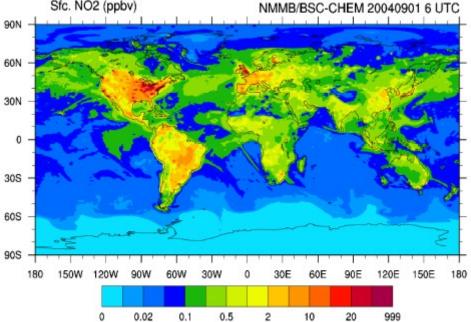


BSC model results: mineral dust and sea salt aerosols

NMMB/BSC-CTM v1.1 2011-07-01 00:00UTC







Aerosol optical depth

Gas phase results

Providing forecast products for

Nacional de Supercomputación

 Participate in the AQMEII on-line Air Quality model intercomparison project

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 1: Introduction to THE HPC ENVIRONMENT APPLIED TO Earth Sciences Applications

Objectives

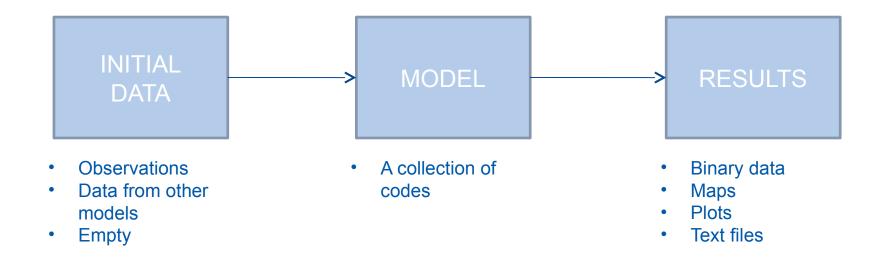
(Introduce the technical point of view of Earth Sciences Applications

- **(** Present some High Performance Computing topics
- (Discover some models and how it works
- **(** Discover basic visualization tools

(*Feel free to ask whenever you want...*

Outline

((Introduction)
((HPC Environment)
((Models)
((Basic Visualization))



Barcelona Supercomputing Center Centro Nacional de Supercomputación

Introduction

HPC environment models Basic visualization

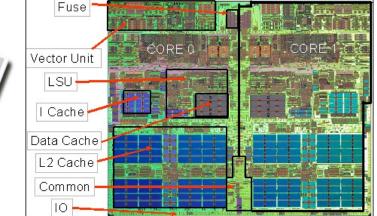
What does "simulate" means in IT context

(HPC: High Performance Computing

(Definition: High-performance computing (HPC) is the use of parallel processing for running advanced application programs efficiently, reliably and quickly.*

(We need HPC to calculate the operations inside the models)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

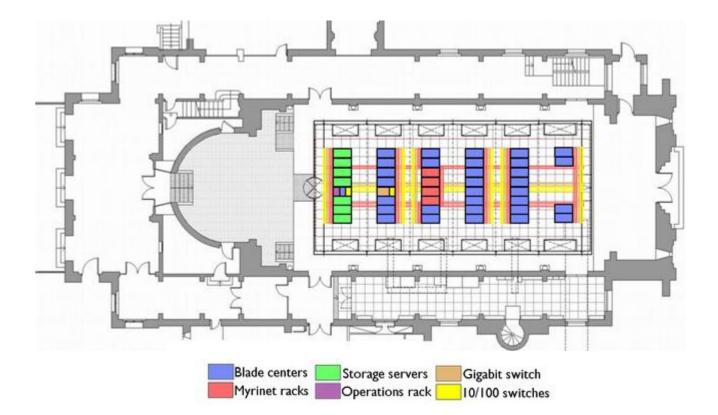

> Introduction HPC environment models Basic visualization

What is it a Supercomputer

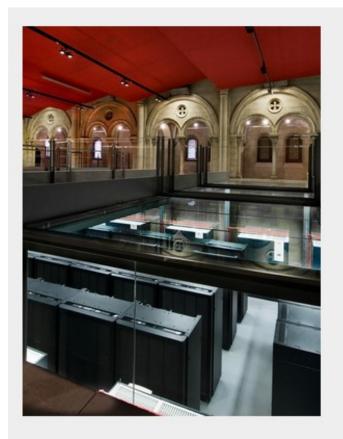
(Processors, Blades, BladeCenters and Racks & network

CORE

PROCCESSOR



BLADE



What is a Supercomputer?

Mare Nostrum

- Peak Performance of 1,1 Petaflops
- 100.8 TB of main memory
- Homogeneous Nodes
 - 3,056 compute nodes
 - 2x Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz
 - 8x4GB DDR3-1600 DIMMS (2GB/core)
- Heterogeneous Nodes
 - 42 heterogeneous compute nodes
 - 2x Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz
 - 2x Xeon Phi 5110 P
 - 8x8GB DDR3-1600 DIMMS (4GB/core)
- 2 PB of disk storage
- Interconnection networks:
 - Infiniband FDR10
 - Gigabit Ethernet
- Operating System: Linux SuSe Distribution

HPC systems evolution

Vector Processors

- Cray-1

SIMD, Array Processors

- Goodyear MPP, MasPar 1 & 2, TMC CM-2
- Parallel Vector Processors (PVP)
 - Cray XMP, YMP, C90 NEC Earth Simulator, SX-6
- (Massively Parallel Processors (MPP)
 - Cray T3D, T3E, TMC CM-5, Blue Gene/L

Commodity Clusters

- Beowulf-class PC/Linux clusters
- Constellations

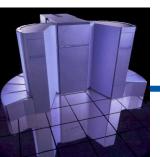
(Distributed Shared Memory (DSM)

- SGI Origin
- HP Superdome

(Hybrid HPC Systems

- Roadrunner
- Chinese Tianhe-1A system
- GPGPU systems

MORE CALCULATION POWER


ECMWF Supercomputer History

1990: Cray Y-MP 8/8-64 8 cpu (166 MHz)

1992: Cray C90

16 cpu

Peak 16 Gf

1994: Cray T3D 128 cpu

1996: Fujitsu VPP700 116 cpu Peak 255 Gf

Barcelona

Center

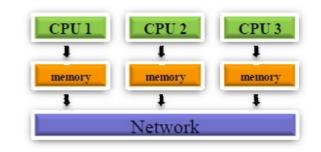
1999: Fujitsu VPP5000 100 cpu (80 MHz) Peak 960Gf

2002: 2 IBM Cluster 1600 30 p690 SMP Upgrade: 70 p690+

2006: 2 IBM Cluster 310 p5-575 Peak 38 Tf

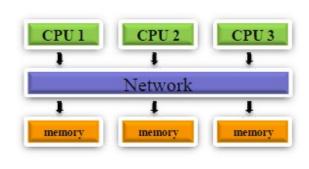
2012-2013: IBM Cluster 768 **POWER7-775** servers Peak 1.5 Pf

2009: IBM Cluster 286 POWER6 p6-575 servers



Different Architectures

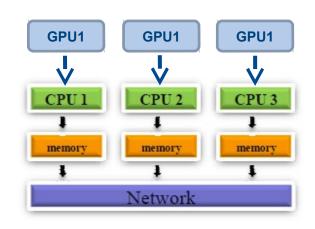
(Distributed Memory


- MPI, OpenMP

Distributed Shared Memory

(Shared Memory

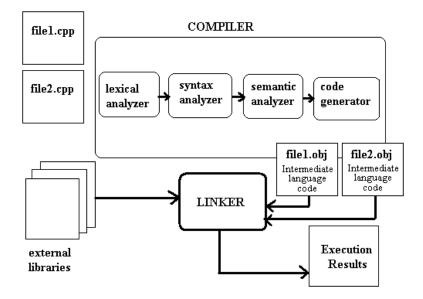
- OpenMP



Shared Memory Systems

(Accelerators

- CUDA, OpenGL, Cell, Xeon Phy...



Compiler

We need to pass from codes written in languages that we understand (Fortran, C, C++,...)

(In a code that the machine can understand.

(Each final executable, will be different in each machine.

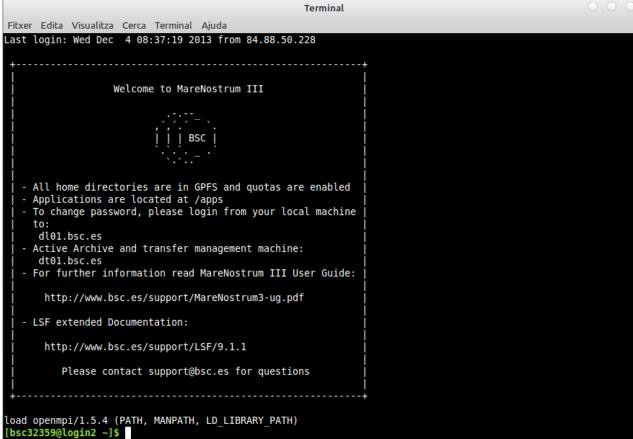
- Sometimes compatible, sometimes not.

Programming Models

- (Message Passing (MPI)
- (Shared Memory (OpenMP)
- (Partitioned Global Address Space Programming (PGAS) Languages
 - UPC, Coarray Fortran, Titanium
- **(** Next Generation Programming Languages and Models
 - Chapel, X10, Fortress, ompSs
- **(**Languages and Paradigm for Hardware Accelerators
 - CUDA, OpenCL
- (Hybrid: MPI + OpenMP + CUDA/OpenCL
- (New Xeon Phy Co-processors

Optimizing your code

(Optimizing the code


- Getting better performances to run faster the models.
- (Many optimizations can be done
 - Take time to write your code. Ask engineers.
 - In compilation time, ask for the usual compilations flags in your machine.
 - But be careful. Optimizations sometimes are no for free:
 - Compilation time is increased
 - It's a tradeoff with precision.

(Interface is done through SSH terminal

(Enable X11 forwarding (ssh -X)

(Unix terminal with a shell (can be shell, bourne shell, cshell...)

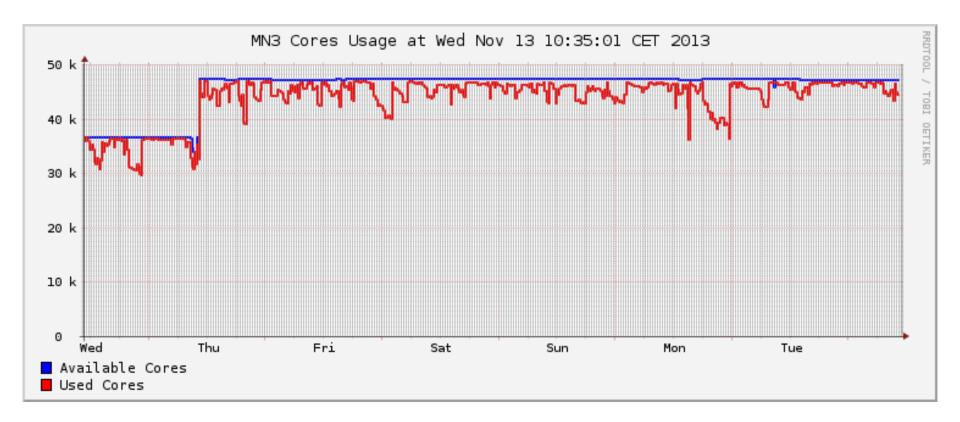
(To run models, we use scripts.

(Script: text file containing a set of commands.

(To edit scripts: many editors (vi, emacs, joe...)

(Defining variables

- Some models, need variables to run or build
- Also, we need access to usual programs


(To make variables persistent (not only in the current session), we need to include them in /gpfs/home/.../.bashrc

```
#NETCDF PROCESSING
           export PATH=$PATH:/gpfs/apps/MN3/NETCDF/3.6.3/bin
           export PATH=$PATH:/gpfs/apps/MN3/CDO/1.5.9/bin
           export PATH=$PATH:/gpfs/apps/MN3/NCO/4.2.3/bin
           export PATH=$PATH:/gpfs/apps/MN3/NCVIEW/2.1.2/bin
           export
           LD LIBRARY PATH=$LD LIBRARY PATH:/qpfs/apps/MN3/NETCDF/3.6.3/lib
           #IMAGES
           export PATH=$PATH:/qpfs/apps/MN3/IMAGEMAGICK/6.8.1-9/bin
           #GRADS
           export PATH=$PATH:/gpfs/apps/MN3/GRADS/2.0.2/bin
           export GADDIR=/qpfs/apps/MN3/GRADS/2.0.2/data/
           #NCL
           export NCARG ROOT=/qpfs/apps/MN3/NCL/6.1.2
           export PATH=$PATH:/gpfs/apps/MN3/NCL/6.1.2/bin
           #R
           export PATH=$PATH:/gpfs/apps/MN3/R/2.15.2/bin
           #PANOPLY
           export PATH=$PATH:/gpfs/apps/MN3/PANOPLY/3.1.7/
Supercomputing
```

Centro Nacional de Supercomputación

Barcelona

(Sharing resources

(Constraints

- Many users
- Many jobs
- Limited ressources

(We need a job sumitter and scheduler

- Distributes jobs through machine
- Gives priority
- Each job has an id
- Makes a waiting queue

(The user submits the jobs and waits for the result.

(Commands in our machine

- bsub
- bkill
- bjobs

Job submit

```
#!/bin/bash
#BSUB -n 8
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -cwd .
#BSUB -J helloworld parallel
#BSUB -W 00:01
#BSUB -U patc
mpirun ./my job
```

```
exit
```


Queue example

[bsc323	59@login2 ~	~]\$ bjobs			
JOBID	USER SI	TAT QUEUE	FROM_HOST	EXEC_HOST	JOB_NAME SUBMIT_TIME
649736	bsc3235 RU	JN bsc_es	s16r2b45	s11	*AG_AND1km Dec 4 06:17
649782	bsc3235 RU	JN bsc_es	s16r2b45	s16	IMAG_CAT Dec 4 07:30
649830	bsc3235 RU	JN xlarge	login2	s10	WRF-TEST Dec 4 08:38
649831	bsc3235 RU	JN xlarge	login2	s03	*-WRF-2013 Dec 4 08:39
649841	bsc3235 RU	JN bsc_es	login2	s15	*GE-NETCDF Dec 4 08:56
649852	bsc3235 RU	JN bsc_es	login1	s15	KRIGING_AM Dec 4 09:14
649850	bsc3235 RU	JN xlarge	s10r1b29	s03	*OPE-CAN_t Dec
649854	bsc3235 RU	JN xlarge	s03r1b15	s08	*LIOPE-CAN Dec 4 09:15
649858	bsc3235 RU	JN bsc_es	s03r1b15	16*s16	NDOWN_IP Dec 4 09:17
		_		16*s02	—

Manage data

- (In Earth Sciences community, HUGE size of data can be generated.
- (We need different filesystems to work and store this data.
 - <u>Immediate disk</u>: disk in the supercomputer where the model is run.
 Very fast disk.
 - <u>Medium term disk</u>: one the data is generated, we need to work with the data to analyse it.
 - Long term storage: store the data, in case to reuse later. Usually tapes, speed is not a constraint.

I Data storage costs money !!!

Moving data

(Usually, we have to move data from our local computer to the supercomputer

- Result files
- Init files

(We use a secure copy

- scp file.local user@machine.bsc.es:/PATH/.

File types

(Binary data is simple, but hard to read it.

- I need to know how this data was created.
- We need standards to build files in order to exchange between groups.
 - NETCDF
 - HDF
 - GRIB1
 - GRIB2

To get this information: ncdump -h


```
netcdf grid modWRF {
dimensions:
               x = 266;
               y = 169;
               time = UNLIMITED ; // (7 currently)
variables:
               double time(time) ;
                    time:standard name = "time" ;
                    time:units = "day as %Y%m%d.%f" ;
                    time:calendar = "proleptic gregorian" ;
               float imask(time, y, x) ;
                    imask:FieldType = 104 ;
                    imask:MemoryOrder = "XY " ;
                    imask:description = "LAND MASK (1 FOR LAND, 0 FOR WATER)";
                    imask:stagger = "" ;
               float lat(time, y, x) ;
                    lat:units = "degree north" ;
                    lat:FieldType = 104 ;
                    lat:MemoryOrder = "XY " ;
                    lat:description = "LATITUDE, SOUTH IS NEGATIVE" ;
                    lat:stagger = "" ;
               float lon(time, y, x) ;
                    lon:units = "degree east" ;
                    lon:FieldType = 104 ;
                    lon:MemoryOrder = "XY " ;
                    lon:description = "LONGITUDE, WEST IS NEGATIVE" ;
                    lon:stagger = "" ;
```

File types

(Once we have filetypes, we need software to work with:

- NCO: <u>http://nco.sourceforge.net/</u>
 - NetCDF operators
- CDO: <u>https://code.zmaw.de/projects/cdo</u>
 - Climate Data Operators
- LIBGRIB:
 - Library to work with gridded binaries.

Barcelona Supercomputing Center Centro Nacional de Supercomputación

> Introduction HPC environment **models** basic visualization

Types of simulations

(Climate Simulations

- Global scale
- Large periods
- Huge amount of data created
- Execution time is not a critical constraint
- Example: EC-EARTH model for 1900 to 2100, year simulation

(Operational Simulations

- Global/Regional Scale
- Small periods
- Data created is smaller but postprocess products are more important
- Execution time and reliability are very critical
- Example: Daily weather forecast

Setting up a model

(A model is a collection of source codes(We need to compile to build an executable(The executable will run and produce results

(Usually, models have a building producedure

- Configure
- Makefiles
- Scripting...

Computational demands

Which domains are we simulating?

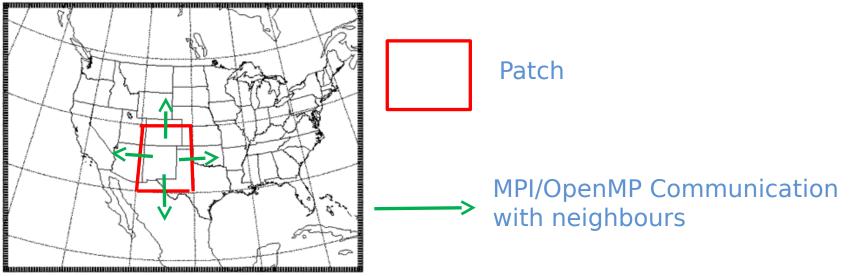
- Barcelona
- Catalunya
- Spain
- World

Which resolution?

- 1 km2
- 4 km2
- 12 km2
- 50 km2

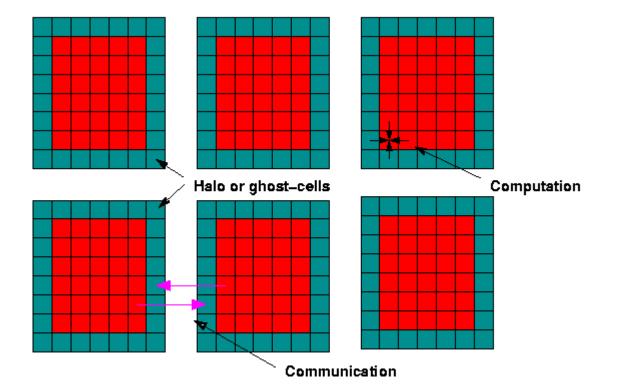
How many variables we want to compute?

- T2
- U10, V10
- QRAIN, QVAPOR

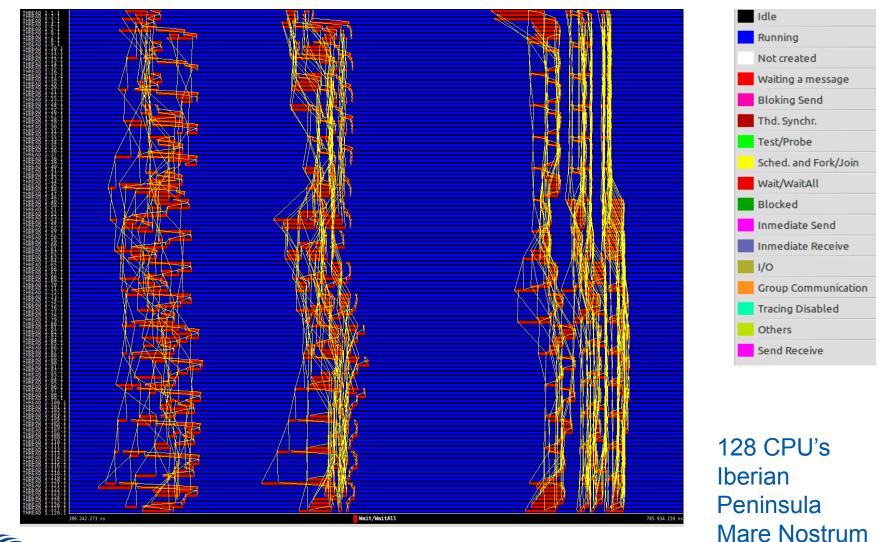

[Increasing this parameters, increases the system constraints

- Computation Needs (CPU's, Memory Bandwith...)
- Data Storage

Supercomputing Center Centro Nacional de Supercomputación


Parallelizing Atmospheric Models

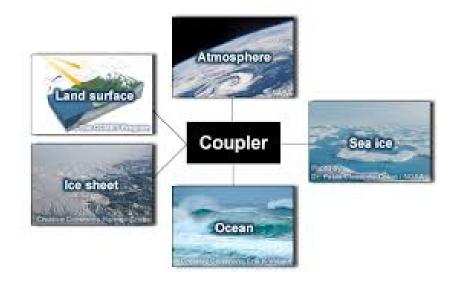
- (We need to be able to run this models in Multi-core architectures.
- (Model domain is decomposed in patches
- (Patch: portion of the model domain allocated to a distributed/shared memory node.


Parallelizing Atmospheric Models

(Halo exchange

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Parallelizing Atmospheric Models



Barcelona Supercomputing Center Centro Nacional de Supercomputación

Couplers

(What is the role of a coupler ?

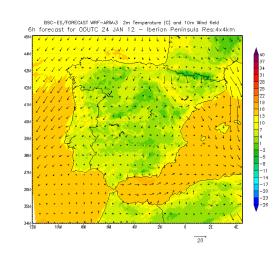
- Exchange and transform information through two or more diferent models.
- Manage the execution and synchronization of the codes.
- Example: couple an ocean model and atmosphere.

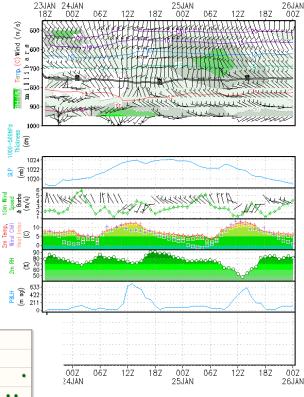
Couplers

(Existing couplers

- ESMF
- OASIS
- CESM

(Kinds of coupling


- Offline: a model is run with the output of another one.
- Online: models are run simultaneously.
 - Feedback between models
 - Example: chemistry and solar radiation.



Post-processing

(Conce the model is run successfully, we need to post-process results to visualise data

- Maps
- Plots
- Text files
- 3D Animations

Post-processing

- (This stage can be done in the same supercomputer or in independent workstations
- If Software to generate these products has to be installed and run
 - Examples
 - GRADS for pictures
 - Extract for text files to insert in a Database
 - GNU-plot to plot time series

Workflow

Barcelona Supercomputing Center Centro Nacional de Supercomputación

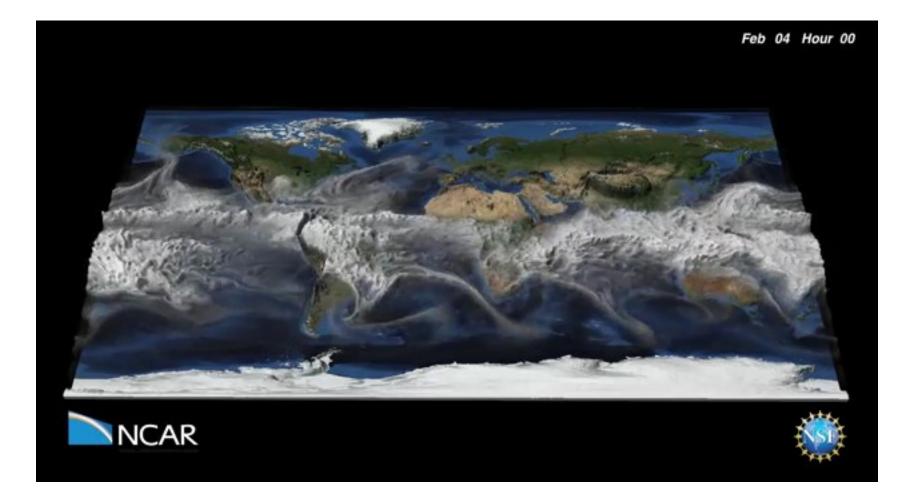
Introduction HPC environment models BASIC VISUALIZATION

Objective

(Numerical models produce a huge amount of data on a variety of formats

- Binary
- NetCDF
- ASCII
- HDF5
- GRIB

...


(We need tools to analyse and visualise them

(In this section we will introduce some utilities freely available and widely used within the Earth Sciences community

(Many more are available...

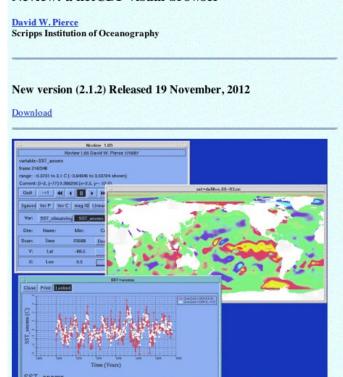
http://www.youtube.com/watch?v=am90gOaM16Q

Many Packages exists out there

(Visualization platforms

- NCVIEW
- PANOPLY
- GRADS
- NCL
- MapGenerator

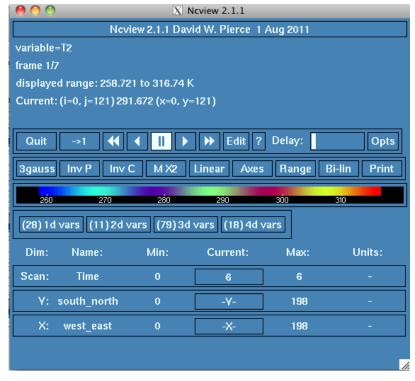
Visualization Ncview: a netCDF visual browser

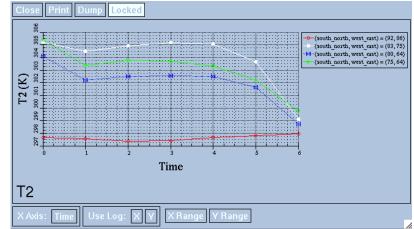

- ((Noview is a visual browser for netCDF format files.
 ((Very useful to get a quick and easy look at your netCDF files.
 ((You can view: Noview: a netCDF visual browser
 - simple movies of the data
 - view along various dimensions
 - take a look at the actual data values
 - change color maps
 - invert the data
 - etc.

(It runs on UNIX/Linux platforms.

(For more information:

http://meteora.ucsd.edu/~pierce/ncview_home_page.html


Ncview: examples


(Simple console

- Meta data display
- Time controls
- Different color scales
- Enlarge images
- Define axes
- Define range
- Plot interpolated 2D fields
- Plot time series

(Usage:

ncview wrfout_d01

Visualization Panoply: netCDF, HDF and GRIB Data Viewer

Cross-platform application to plot geo-gridded arrays from netCDF, HDF and GRIB datasets

Features:

- Slice and plot specific latitude-longitude, latitude-vertical, longitude-vertical, or time-latitude arrays from larger multidimensional variables.
- Combine two arrays in one plot by differencing, summing or averaging.
- Plot lon-lat data on a global or regional map (using any of over 75 map projections) or make a zonal average lineplot.
- Use any ACT, CPT, GGR, or PAL color table for scale colorbar.
- Save plots to disk GIF, JPEG, PNG or TIFF bitmap images or as PDF or PostScript graphics files.
- Export lon-lat map plots in KMZ format.
- Export animations as AVI or MOV video or as a collection of individual frame images.
- Explore remote THREDDS and OpenDAP catalogs and open datasets served there.

t runs on Linux, UNIX, Mac OS X, Windows http://www.giss.nasa.gov/tools/panoply/

GISS Home

News & Features

Projects & Groups

Datasets & Images

Publications

Software

Education

About GISS

Events

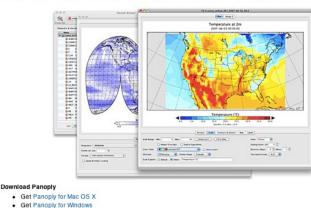
National Aeronautics and Space Administration Goddard Institute for Space Studies Goddard Space Flight Center Sciences and Exploration Directorate Earth Sciences Division

Panoply netCDF, HDF and GRIB Data Viewer

panoply \PAN-uh-plee\, noun: 1. A splendid or impressive array. ...

Panoply is a cross-platform application which plots geo-gridded arrays from netCDF, HDF and GRIB datasets. You can:

- Slice and plot specific latitude-longitude, latitude-vertical, longitude-vertical, or timelatitude arrays from larger multidimensional variables.
- Combine two arrays in one plot by differencing, summing or averaging.
 Plot lon-lat data on a global or regional map (using any of over 75 map projections) or
- make a zonal average lineplot. • Overlay continent outlines or masks on ion-lat plots.
- Overlay continent outlines or masks on ion-lat plots.
 Use any ACT, CPT, GGR, or PAL color table for scale colorbar.
- Save plots to disk GIF, JPEG, PNG or TIFF bitmap images or as PDF or PostScript
- graphics files.


· Get Panoply "Generic" for Linux, OS/2, etc

- Export ion-lat map plots in KMZ format.
- Export animations as AVI or MOV video or as a collection of invididual frame images.
- Explore remote THREDDS and OpenDAP catalogs and open datasets served there.

The current version of Panoply is 3.1.6, released 2012-10-29

Panoply requires that your computer have a Java SE 6 runtime environment, or better, installed

To be plotted by Panoply, dataset variables must be tagged with metadata information using a convention such as CF.

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 1: Performance analysis of Earth Sciences Models

Why Performance Analysis?

(Is it needed?

- Understand the behaviour of an application
 - Can we execute an application faster?
 - Is a simulation finished on time?
- Optimize an application
- Do we use the resources optimal?
- Could we decrease the electricity bills of a supercomputer?
- Predict physical catastrophes on time?
- Is needed for the next-generation of supercomputers
- How do you know that your application can not be improved?

What is WRF?

(Weather Research & Forecasting (WRF) Model

- Mesocale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs.
- Suitable for a broad spectrum of meteorological applications across scales ranging from meters to thousands of kilometers.
- It is a supported "community model" www.wrf-model.org
- Development led by NCAR, NOAA/GSD and NOAA/NCEP/EMS with partnerships at AFWA, FAA, NRL, and collaborations with universities and other government agencies in the US and worldwide.
- WRF is going to be explained in another session.

Our case

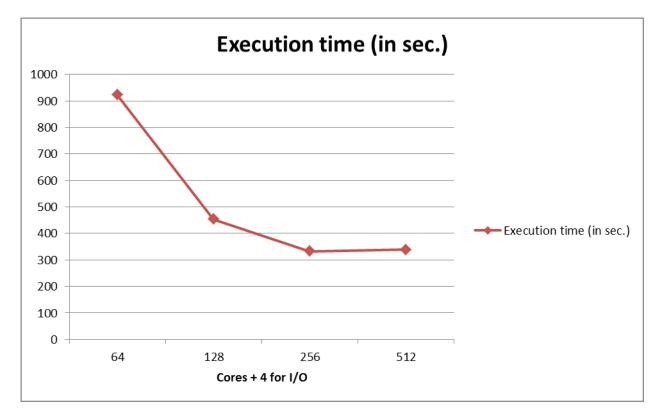
(Used data

- Real data from Caliope system
 - Simulation of 36 hours
 - Grid size: 400 x 480
- **(** Marenostrum Supercomputer
 - We used up to 516 cores (33 nodes)
 - Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz
 - Interconnection: Infiniband

Objectives

(Observe the performance of the WRF model

(Indicate any optimization technique through the namelist file


(Compare both MPI and MPI/OpenMP versions)

(Present the various I/O modes

(Visualize Paraver traces

(Execution time in seconds

Bad scaling for 256+ cores Is it because of the workload or the setup of I/O servers?

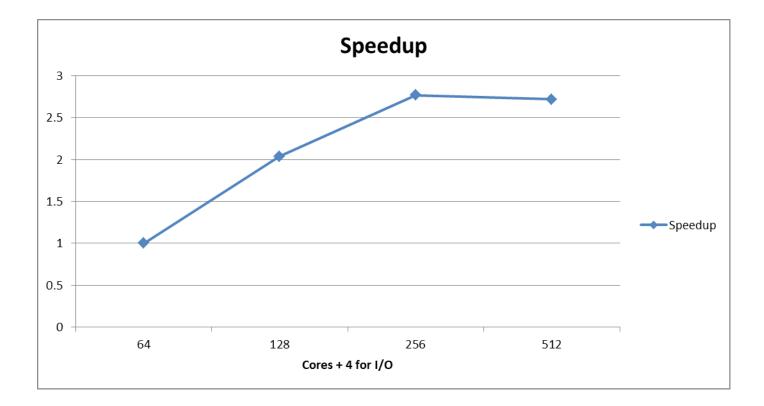
SC Barcelona Supercomputing Center Centro Nacional de Supercomputación

- (According to WRF FAQ in order to use the model as expected, there should be at least 15 x 15 points per process
- (The previous behavior means that we should increase the grid resolution or setup a different I/O configuration (explained later)
- It Before decide about some results we should be familiar with the internals of an application

Speedup refers to how much a parallel algorithm is faster than a corresponding sequential algorithm

(Is defined by the following formula:

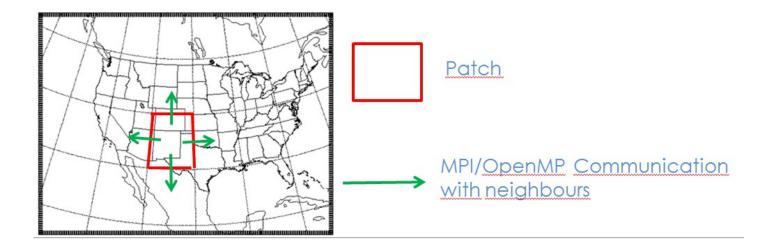
$$Sp = \frac{T_1}{T_p}$$


- p is the number of processors
- T_1 is the execution time of the sequential algorithm
- Tp is the execution time of the parallel algorithm with p processors

(We do not have the duration of the serial version so we'll compute the speedup with the 64 processors as base

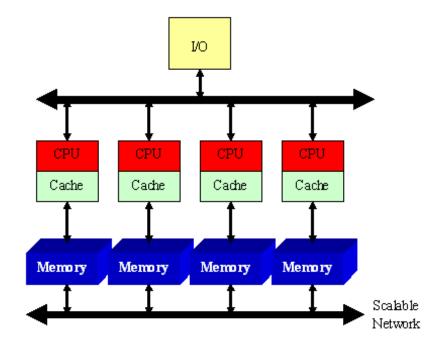
Speedup

We can see the speedup for our execution From 256 to 512 cores there is no improvement



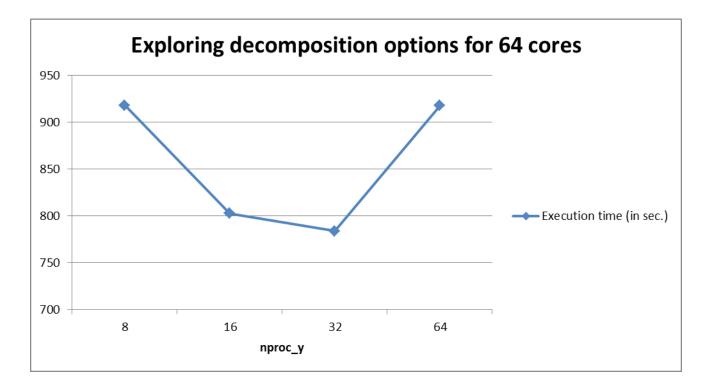
- (The file namelist.input contains a lot of necessary information for the execution of the model such as start/end dates, information about resolution etc.
- WRF
 WRF

Decomposition (nproc_x, nproc_y)


(By default WRF will use the square root of the processors for values in nproc_x and nproc_y. If it is not possible, it will use some values that are close to each other.

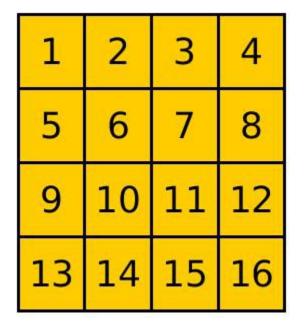
Decomposition (nproc_x, nproc_y)

(This is not correct as WRF responds better to a more rectangular decomposition (i.e. X<<Y). This leads to longer inner loops for better vector and register reuse, better cache blocking, and more efficient halo exchange communication pattern.

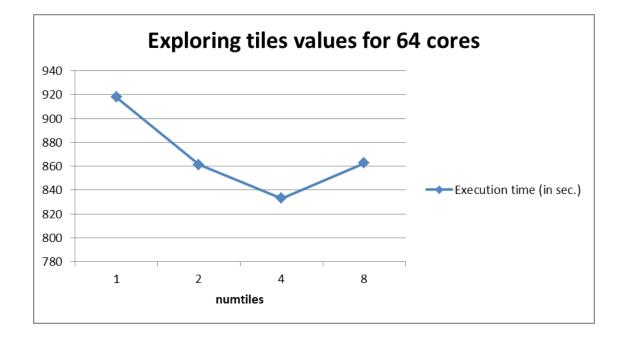


The values depend on the software and hardware.

Decomposition (nproc_x, nproc_y)


(The values can be computed only by trial and error

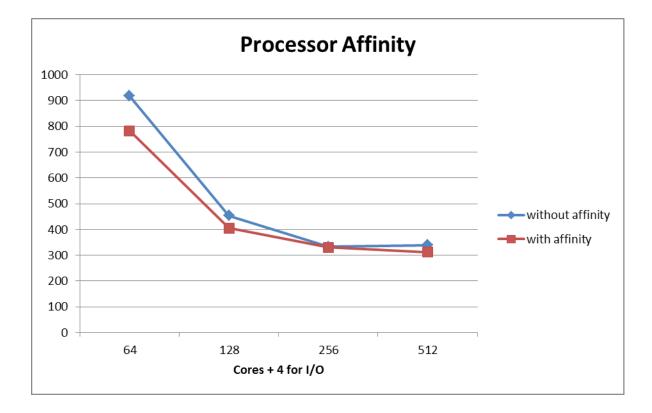
The default value of nproc_y when we use 64 cores (+4 cores for I/O) is equal to 8. By changing this value to 32 (nproc_x = 2), the execution time was decreased by 14.58%.


In this example there is one patch on a processor which is split to 16 tiles.

(The use of tiling has greatest effect on lower processors when the patches do not fit into cache.

(Again we have to follow the trial and error approach.

When we declare 4 tiles the execution time is decreased by 9.26%.



Processor Affinity

- (Processor affinity is the procedure where we declare a mapping between a process and hardware (processor, core etc.).
- (In order to apply processor affinity (per core) add the option "--bind-to-core". This procedure maps each process on each core and does not allow any process migration.
- (This is important because if a process migrates then it can not find the previous saved data in the new cache memory.

(The execution time is decreased till 14.8% for 64 cores.

(By rank reordering we can achieve less communication

Comparison of the second se

(Some people achieved +18% better performance by rank reordering

(Cray machines provide their own tool

(What is the currently mapping of the processes?

Rank Ordering

Images from "Tuning WRF Forecasts on the Cray XT", Peter Johnsen

(Default rank ordering

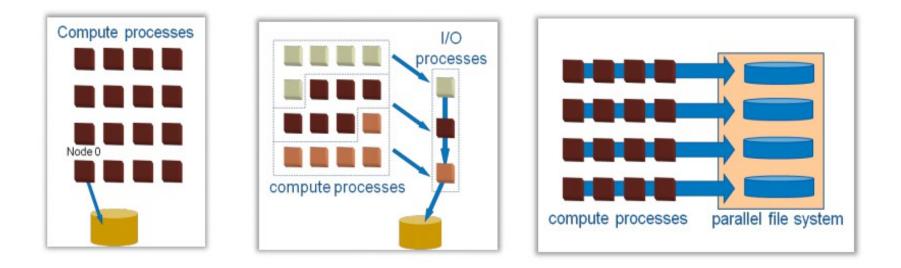
WRF (grid	48x128	3	6144 c	ores												
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208

(Optimal rank ordering

Optin	nal rank	orde	ring									
	0	1	48	49	96	97	144	145	192	193	240	241
	2	3	50	51	98	99	146	147	194	195	242	243
	4	5	52	53	100	101	148	149	196	197	244	245
	6	7	54	55	102	103	150	151	198	199	246	247

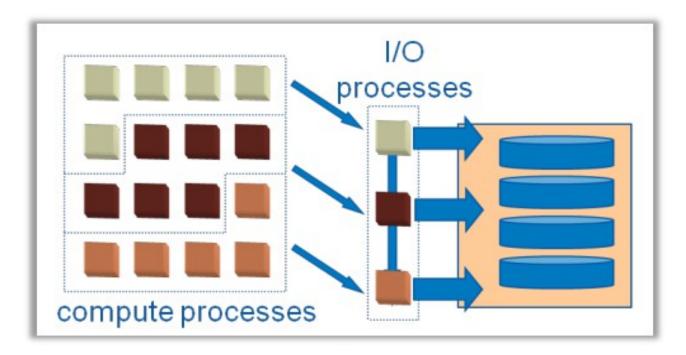
Rank Ordering Results

(The variable reorder_mesh in the namelist.input did not improve the performance.

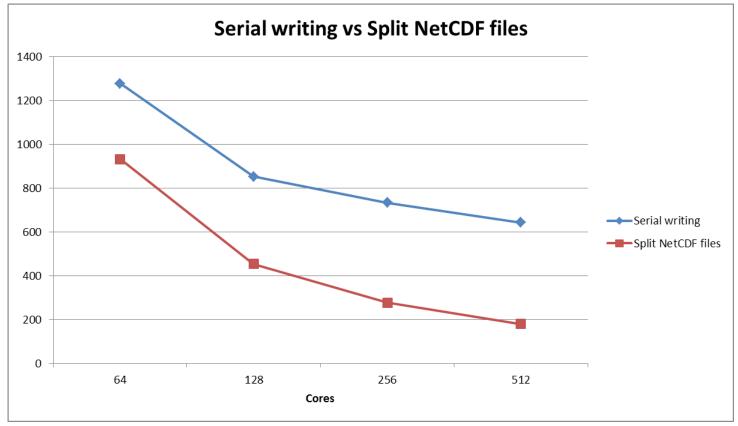

(We implemented the exact same mapping for our platform. The results were not improved by the new mapping.

We use at most 32 nodes, thus mapping can not be really improve the execution as more nodes are needed.

WRF I/O


(Images from "Opportunities for WRF Model Acceleration", John Michalakes, Andrew Porter

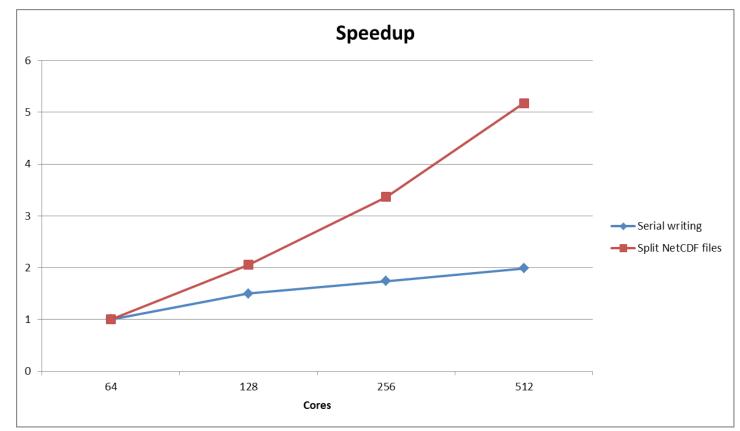
(Parallel NetCDF written to single files by all MPI tasks.



Serial writing vs Split NetCDF files

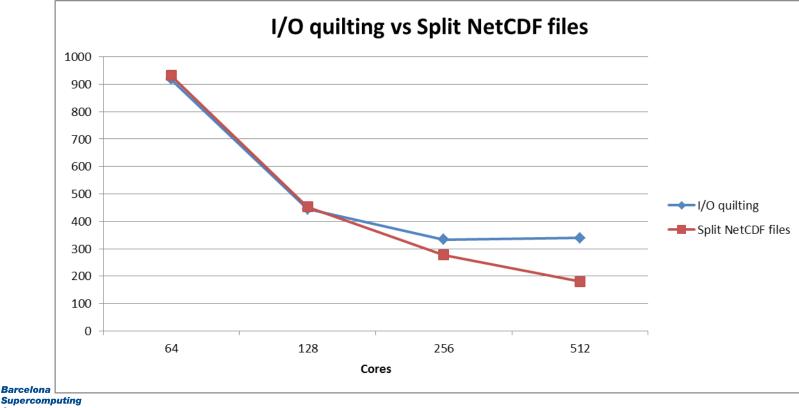
When we split the NetCDF files, every MPI process saves its own file.

The improvement depends on the size of the data per process. The performance improved by 2.5x times for 512 cores.

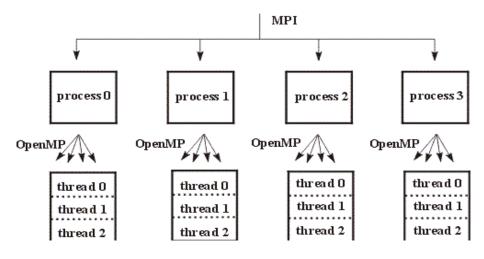

Disadvantage: We have to merge all the files, WRF does not support it officially.

Speedup Serial writing vs Split NetCDF files

(Now the speedup is improved in comparison to the initial results, I/O is a bottleneck.(We have a speedup of 5.1 with 512 cores (64 cores is the base) while before we had speedup of 2.71.

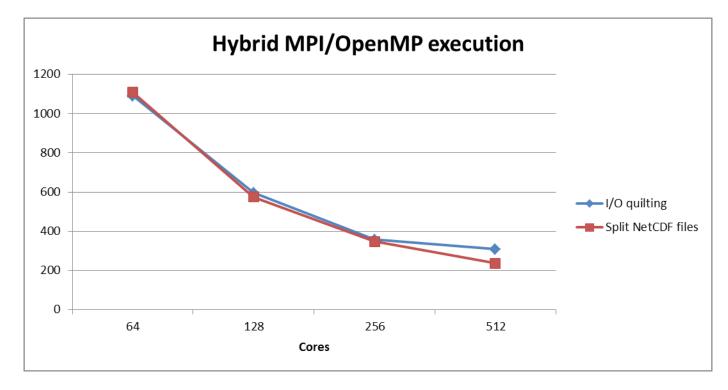


I/O Quilting vs Split NetCDF files

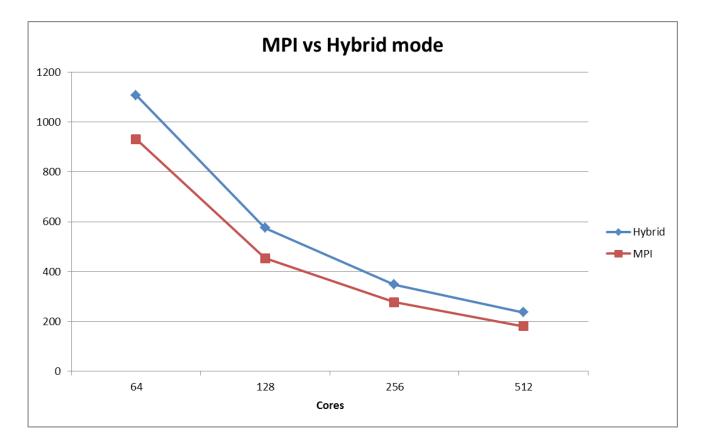

(One problem with splitting the NetCDF files is that the requested time to handle them, could be significant.

Content of the servers play an important role for I/O quilting? It depends on the case.

MPI/OpenMP

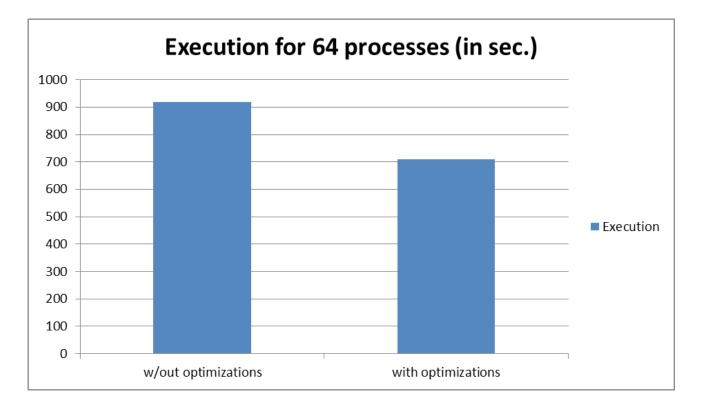

- (COpenMP is an API that supports multi-platform shared memory multiprocessing programming (http://www.openmp.org)
- Comparison of the second se
- (Message Passing Interface (MPI) is used for distributed memory problems (http://www.open-mpi.org)
- (MPI is used for large scale experiments across many nodes.

WRF Hybrid MPI/OpenMP


(We execute the hybrid version of WRF with various I/O modes.(The I/O performance does not seem to be improved significant by splitting the NetCDF files.

WRF MPI vs MPI/OpenMP

Executing both versions with splitting NetCDF files.
For MPI/OpenMP we use one MPI process and 16 OpenMP threads per node.
MPI is between 15.8% and 23.75% faster than hybrid mode.



Combine optimizations

Could we really combine some of the previous optimizations? The answer is not clear and it depends on many factors.

(By combining processor affinity, tiles declaration, and decomposition of 2 x 32 for 64 processors, the execution time was improved by 22.8%.

Used optimizations

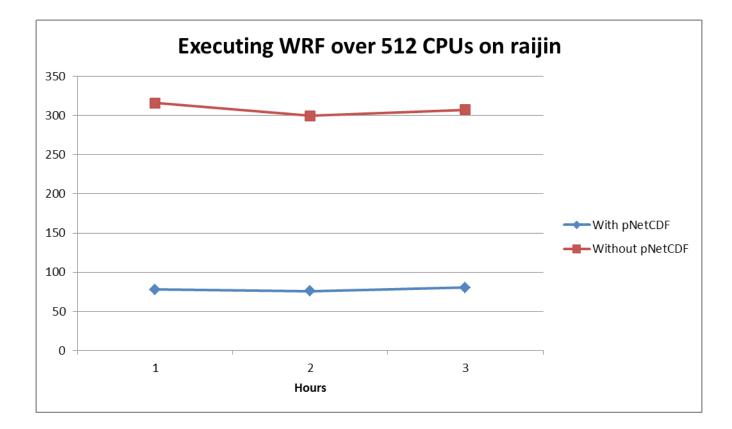
(Try any of the following declarations in the namelist.input file under the domains section. This work was done with WRF v3.5.1. The following values apply for a specific example with 64 processes, change them as you wish.

Declarations for the namelist.input (domains section) nproc_x = 2 nproc_y = 32 numtiles = 4 reorder_mesh = .true.

(Processor affinity: add the flag --bind-to-core after the mpirun call.

(Split NetCDF files: declare io_form_history = 102 (time_control section)

(Parallel NetCDF: io_form_history = 11 (not working currently). Do not forget to declare nocolons = .true. in the namelist files of WPS and WRF.


(Disable I/O quilting: declare nio_tasks_per_group = 0 (namelist_quilt section)

(Add more I/O servers: increase nio_groups (namelist_quilt section)

Parallel NetCDF

Results from ARC centre of excellence for Climate System Science.Parallel NetCDF for this case improves the performance by 3.8 to 4 times.

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Performance Analysis with Paraver

(An application to analyze traces

- (Discover bottlenecks
- (Possible to do visual and statistical analysis of the various events
- **(**Customizable semantics of the visualized information
- (Provides views

(Information: http://www.bsc.es/paraver/

Visualizing the computation of a whole trace

Visualizing computation duration of 6 hours simulation (5.2GB initial trace, 68 cores)

Beginning of the trace, 4 cores for I/O quilting

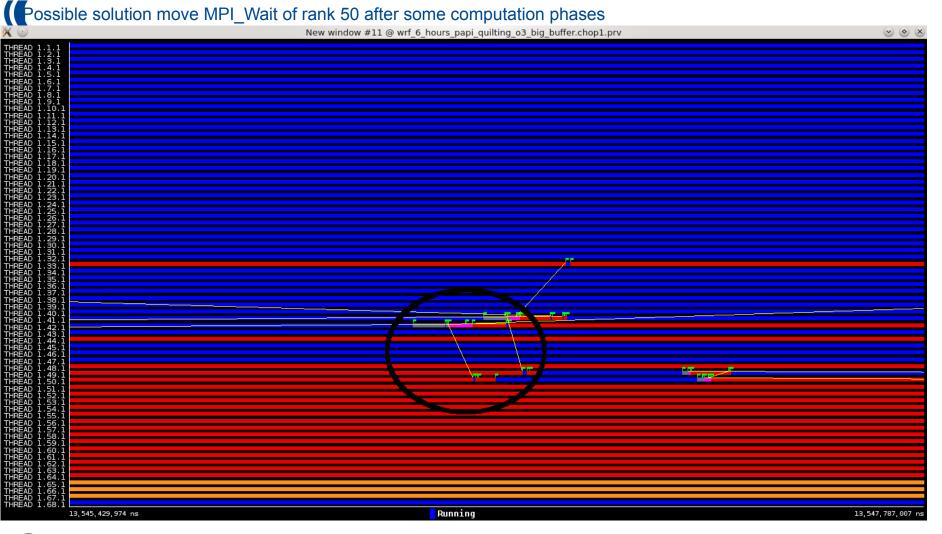
Blue colour is running part, no communication, yellow colour is message transfer (send/recv etc.)

\odot	New window #3 @ wrf_6_hours	_papi_quilting_o3_big_buffer.chop1.prv	\odot (
READ 1.1.1 READ 1.2.1 READ 1.3.1 READ 1.4.1 READ 1.4.1			
READ 1.2.1 READ 1.3.1 READ 1.4.1			
READ 1.4.1			
EAD 1.5.1			
EAD 1.8.1			
EAD 1.10.1			
EAD 1.11.1 EAD 1.12.1 EAD 1.12.1 EAD 1.13.1 EAD 1.14.1			
EAD 1.15.1			
EAD 1.15.1 EAD 1.15.1 EAD 1.16.1 EAD 1.16.1 EAD 1.16.1 EAD 1.18.1 EAD 1.18.1			
EAD 1.19.1			
AD 1.21.1 AD 1.22.1			
EAD 1.23.1			
AD 1.25.1			
AD 1.26.1			
AD 1.28.1			
AD 1.29.1 AD 1.30.1 AD 1.32.1 AD 1.32.1			
AD 1.32.1			
AD 1.32.1 AD 1.33.1 AD 1.33.1 AD 1.33.1 AD 1.34.1 AD 1.36.1 AD 1.37.1 AD 1.3			
AD 1 31.1 AD 1 32.1 AD 1 33.1 AD 1 33.1 AD 1 33.1 AD 1 33.1 AD 1 35.1 AD 1 40.1 AD 1 40.1			
AD 1.37.1			
AD 1.38.1 AD 1.39.1			
AD 1.40.1			
AD 1.42.1			
AD 1.43.1 AD 1.44.1			
AD 1 142 1 AD 1 43 1 AD 1 43 1 AD 1 44 1 AD 1 45 1 AD 1 45 1			
AD 1.47.1 AD 1.48.1			
AD 1.49.1 AD 1.50.1			
AD 1.50.1 AD 1.51.1			
AD 1.51.1 AD 1.52.1 AD 1.52.1 AD 1.53.1 AD 1.53.1 AD 1.54.1			
AD 1.54.1			
AD 1.55.1 AD 1.56.1			
AD 1.57.1			
AD 1.59.1			i al c
AD 1.60.1 AD 1.61.1			
AD 1.62.1 AD 1.63.1			
AD 1.64.1			
AD 1.55.1 AD 1.57.1 AD 1.57.1 AD 1.57.1 AD 1.57.1 AD 1.60.1 AD 1.60.1 AD 1.60.1 AD 1.62.1 AD 1.62.1 AD 1.64.1 AD 1.64.1 AD 1.66.1 AD 1.66.1 AD 1.66.1 AD 1.66.1			
AD 1.67.1 AD 1.68.1			
0 ns	Ru	nning	14, 685, 814, 4

Barcelona Supercomputing Center Centro Nacional de Supercomputación

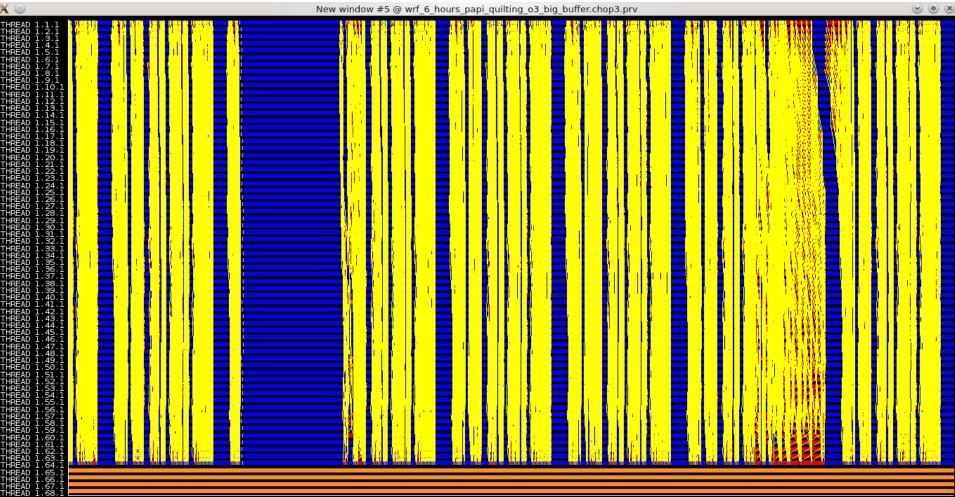
Let's zoom a bit before the end of the previous visualization There are some long MPI_Wait calls (red colour)

0	u	New window #3 @ wrf_6_hours_papi_quilting_o3_big_buffer.chop1.prv	\odot \odot \otimes
HREAD 1.1.1 HREAD 1.2.1 HREAD 1.3.1 HREAD 1.4.1			
HREAD 1.3.1 HREAD 1.4.1 HREAD 1.5.1			
HREAD 1.6.1 HREAD 1.7.1			
HREAD 1.8.1			
-READ 1 10			
HREAD 1.11.			
READ 1.11. READ 1.12. READ 1.13. READ 1.13.			
READ 1.14.			
READ 1.14. READ 1.15. READ 1.16. READ 1.17. READ 1.18. READ 1.18.			
READ 1.18			
READ 1.20.			
READ 1.20. READ 1.21. READ 1.22.			
READ 1.25.			
READ 1.23. READ 1.25. READ 1.25. READ 1.26. READ 1.27. READ 1.28.			
HREAD 1.28. HREAD 1.29. HREAD 1.30.			
READ 1.29. READ 1.30. READ 1.31. READ 1.31.			
READ 1.32.			
HREAD 1.33. HREAD 1.34.			
HREAD 1.35. HREAD 1.36.			
HREAD 1.37.			
HREAD 1.39.			
HREAD 1.40. HREAD 1.41.			
HREAD 1.42. HREAD 1.43.			
HREAD 1.44.			
HREAD 1.46.			
HREAD 1.47. HREAD 1.48.			
HREAD 1.49. HREAD 1.50.	i		
HREAD 1.51. HREAD 1.52.			
HREAD 1.52.			
READ 1.53. READ 1.54. READ 1.55.			
HREAD 1.56. HREAD 1.57.			
HREAD 1.58.			
HREAD 1.60.			
HREAD 1.61. HREAD 1.62.			
HREAD 1.63. HREAD 1.64.			
HREAD 1.65. HREAD 1.65.			
HREAD 1.67. HREAD 1.68.			


Barcelona Supercomputing Center Centro Nacional de Supercomputación

We zoom at the beginning of the second half of the previous plot and we focus on rank 50 There are two MPI_Irecv and MPI_Isend calls before the MPI_Wait call

🗙 💿	New window #11 @ wrf_6_hours_papi_quilting_o3_big_buffer.chop1.prv	\odot \odot \otimes
THREAD 1.1.1		
THREAD 1.2.1 THREAD 1.3.1		
THREAD 1.5.1		
THREAD 1.9.1 THREAD 1.10.1		
THREAD 1.11.1 THREAD 1.12.1		
THREAD 1.13.1 THREAD 1.14.1		
THREAD 1.15.1 THREAD 1.16.1		
THREAD 1.17.1 THREAD 1.18.1		
THREAD 1.19.1 THREAD 1.20.1		
THREAD 1.21.1 THREAD 1.22.1		
THREAD 1.23.1 THREAD 1.24.1		
THREAD 1.25.1 THREAD 1.26.1		
THREAD 1.27.1 THREAD 1.28.1		
THREAD 1.29.1 THREAD 1.30.1		
THREAD 1.32.1		
THREAD 1.35.1 THREAD 1.34.1		
THREAD 1.36.1		
THREAD 1.38.1 THREAD 1.39.1		
THREAD 1.40.1 THREAD 1.41.1		
THREAD 1.42.1 THREAD 1.43.1		
THREAD 1.44.1 THREAD 1.45.1		
THREAD 1.46.1 THREAD 1.47.1		
THREAD 1.48.1 THREAD 1.49.1		
THREAD 1.50.1		
THREAD 1.52.1 THREAD 1.53.1		
THREAD 1.54.1 THREAD 1.55.1		
THREAD 1.57.1 THREAD 1.58.1	/	
THREAD 1.59.1		
THERAD 1.1.1 THERAD 1.3.1 THERAD 1.3.1 THERAD 1.3.1 THERAD 1.5.1 THERAD 1.17.1 THERAD 1.13.1 THERAD 1.13.1 THERAD 1.13.1 THERAD 1.13.1 THERAD 1.22.11 THERAD 1.330.1 THERAD 1.331.1 THERAD 1.331.1		
THREAD 1.63.1 THREAD 1.64.1		
THREAD 1.65.1 THREAD 1.66.1		
THREAD 1.67.1 THREAD 1.68.1		
13,490,644	, 280 ns Running	13,491,189,432 ns



The corresponding MPI_Isend for the previous MPI_Irecv is called too late

Ve can observe some communications at the right that behave different than the rest ones

25,246,806,695 ns

Running

28,790,556,567 ns

Barcelona Supercomputing Center Centro Nacional de Supercomputación

If we zoom, we have the following

Similar problems with some MPI Wait calls

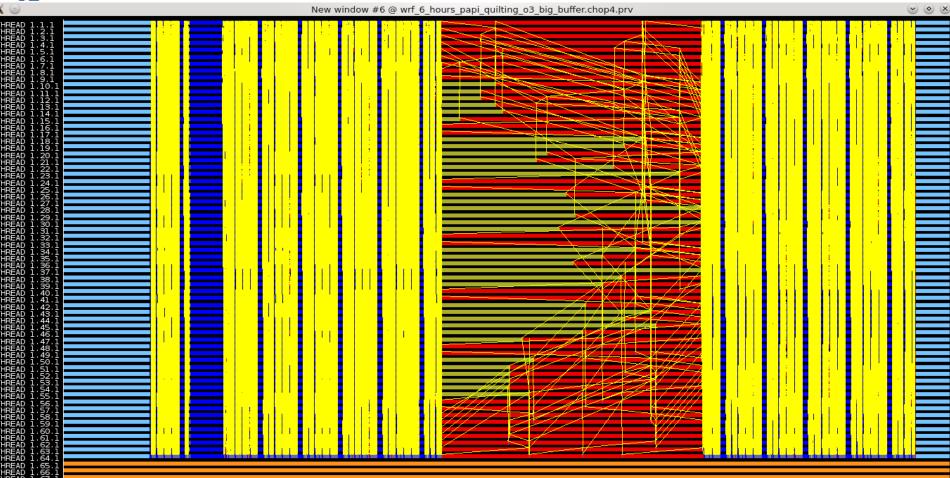
X 🖸 N	ew window #5 @ wrf_6_hours_papi_quilting_o3_big_buffer.chop3.prv	\odot \odot \otimes
THREAD 1.3.1 THREAD 1.3.1 THREAD 1.4.1 THREAD 1.5.1		
	S ARANNA CAN AN CONTRACTOR AND SECOND	
THREAD 1.12.1		
THREAD 1.15.1 THREAD 1.15.1 THREAD 1.16.1		
THREAD 1.19.1		
THREAD 1.22.1 THREAD 1.22.1 THREAD 1.23.1		
THREAD 1.24.1 THREAD 1.25.1		
THREAD 1.28.1 THREAD 1.29.1 THREAD 1.30.1		
THREAD 1.31.1		
THREAD 1.35.1 THREAD 1.36.1 THREAD 1.37.1		
THREAD 1.38.1 THREAD 1.39.1		
THREAD 1.42.1 THREAD 1.43.1 THREAD 1.44.1		
THREAD 1.45.1		
THREAD 1.47.1		
THREAD 1.59.1 THREAD 1.50.1		
THREAD 1.56.1		
THREAD 1.59.1 40.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
THREAD 1.61.1		
THREAD 1.64.1		
THREAD 1.66.1		

27,907,431,599 ns

Barcelona BSC

Supercomputing Center Centro Nacional de Supercomputación 28, 334, 931, 584

During the visualization of the computation areas we can see a large black area


₭ ⊙	Useful Duration @ wrf_6_hours_papi_quilting_o3_bi	g_buffer.filter1.prv	\odot \otimes \otimes
Y THREAD 1.1.1.1 THREAD 1.2.1.1 THREAD 1.2.1.1 THREAD 1.2.1.1 THREAD 1.3.1.1 THREAD 1.3.2.1.1 THREA			
THREAD 1.49.1 THREAD 1.50.1 THREAD 1.51.1 THREAD 1.52.1 THREAD 1.52.1 THREAD 1.55.1 THREAD 1.65.1 THREAD 1.62.1 THREAD 1.66.1 THREAD 1.66.1 <td< td=""><td></td><td></td><td></td></td<>			
49,411,511 us		59	,767,217 us

Barcelona Supercomputing Center Centro Nacional de Supercomputación

137

The previous black area is caused by communication perturbation The brown area is the I/O caused from the flushing of the traces on the hard disk

49,411,511,657 ns

Barcelona Supercomputing Center Centro Nacional de Supercomputación 59,767,217,693 ns

Observing the patterns from the computation phases is a good approach to know where we should focus (we have 5 similar phases)

(The previous visualization with the communications and any extra metric

🔀 💿 New window #11 @ wrf_6_hours_papi_quilting_o3_big_buffer.chop6.prv	00

109,812,165,697 ns

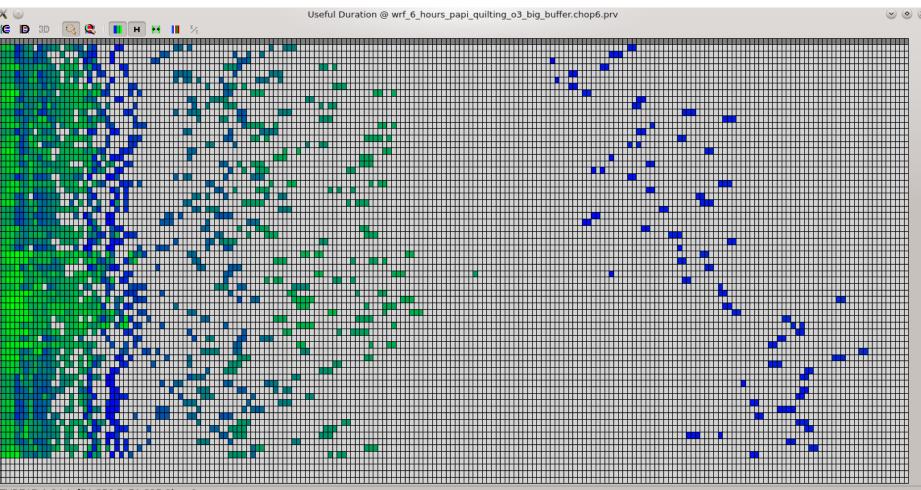
Running

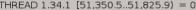
112,314,622,061 ns

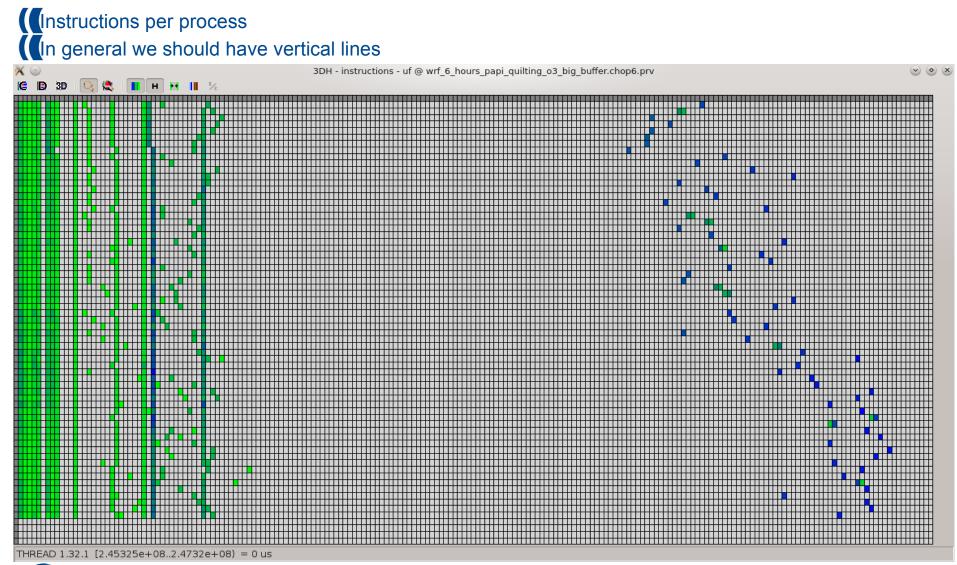
Useful instructions per cycle. A value close to 2 is good. Much lower value means that the code should be improved

× 🔾	Useful IP	C @ wrf_6_hours_papi_quiltin	g_o3_big_buffer.chop6.prv	\odot \otimes \otimes
THREAD 1.1.1 THREAD 1.2.1 THREAD 1.3.1 THREAD 1.4.1 THREAD 1.5.1				
THREAD 1.3.1				
THREAD 1.4.1 THREAD 1.5.1				
THREAD 1.6.1				
THREAD 1.7.1 THREAD 1.8.1				
THREAD 1.6.1 THREAD 1.7.1 THREAD 1.7.1 THREAD 1.8.1 THREAD 1.9.1 THREAD 1.10.1				
THREAD 1.11.1 THREAD 1.12.1 THREAD 1.13.1 THREAD 1.13.1 THREAD 1.14.1				
THREAD 1.14.1				
THREAD 1.15.1 THREAD 1.16.1 THREAD 1.16.1 THREAD 1.17.1 THREAD 1.18.1				
THREAD 1.17.1				
I HREAD I 19				
THREAD 1.20.1 THREAD 1.21.1 THREAD 1.22.1 THREAD 1.22.1 THREAD 1.23.1				
THREAD 1.22.1 THREAD 1.23.1				
THREAD 1.23.1	المتحدين (محمد في محمد في محمد محمد) و من محمد (من محمد) من محمد (من محمد) محمد محمد في (محمد محمد) م المحمد المراجع في المحمد في المحمد في المحمد المراجع في المحمد (من محمد) المحمد في محمد في المحمد المحمد المح			
THREAD 1.24.1 THREAD 1.25.1 THREAD 1.25.1 THREAD 1.26.1 THREAD 1.27.1 THREAD 1.28.1				
THREAD 1.26.1 THREAD 1.27.1				
THREAD 1.28.1				
THREAD 1.29.1 THREAD 1.30.1 THREAD 1.31.1 THREAD 1.31.1 THREAD 1.32.1				
THREAD 1.30.1 THREAD 1.31.1 THREAD 1.31.1 THREAD 1.32.1				
THREAD 1.33.1				
THREAD 1.33.1 THREAD 1.34.1 THREAD 1.35.1 THREAD 1.36.1 THREAD 1.37.1				
THREAD 1.36.1				
THREAD 1.37.1 THREAD 1.38.1				
THREAD 1.39.1				
THREAD 1.38.1 THREAD 1.39.1 THREAD 1.40.1 THREAD 1.40.1 THREAD 1.41.1				
THREAD 1.42.1 THREAD 1.43.1 THREAD 1.44.1 THREAD 1.44.1 THREAD 1.45.1				
THREAD 1.44.1 THREAD 1.45.1				
THREAD 1.45.1 THREAD 1.46.1				
THREAD 1 47 1				
THREAD 1.48.1 THREAD 1.49.1 THREAD 1.50.1				
THREAD 1.50.1 THREAD 1.51.1				
THREAD 1.52.1				
THREAD 1.51.1 THREAD 1.52.1 THREAD 1.52.1 THREAD 1.53.1 THREAD 1.54.1 THREAD 1.55.1				
THREAD 1.55.1				
THREAD 1.56.1 THREAD 1.57.1				
THREAD 1.55.1 THREAD 1.59.1 THREAD 1.59.1 THREAD 1.60.1 THREAD 1.61.1 THREAD 1.63.1 THREAD 1.63.1 THREAD 1.64.1				
THREAD 1.60.1				
THREAD 1.61.1 THREAD 1.62.1				
THREAD 1.63.1				
THREAD L.65.				
THREAD 1 66 1				

109,812,165 us

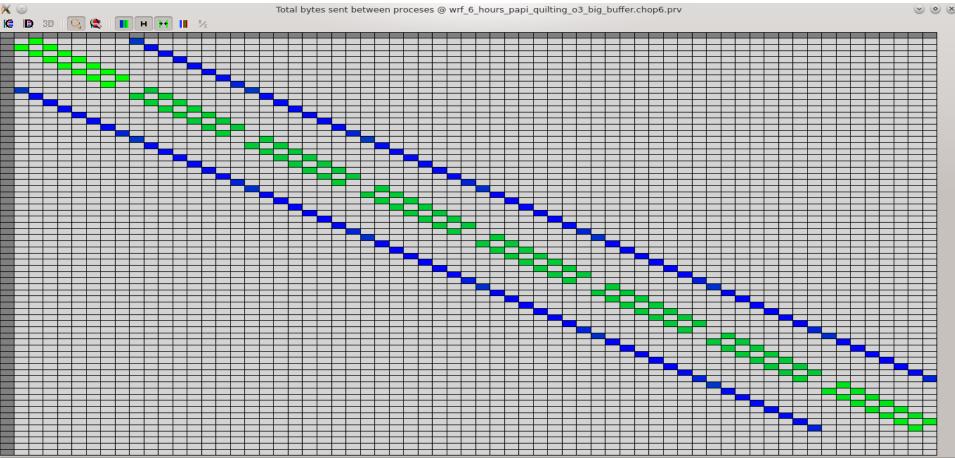



112, 314, 622 us


Barcelona Supercomputing Center Centro Nacional de Supercomputación

(Useful duration per process

MPI calls profiling


📉 💿 👘 Total N			ırs_papi_quilt	ing_o3_big_b	uffer.chop7.prv 💿 🔿 🙁	🕺 💿 🛛 Total M			ırs_papi_qui	lting_o3_big_b	uffer.chop7.prv 🕑 🙆
(C D 3D 🔾	🔍 🔳 н +	 Ⅰ ✓ 				ie 🗈 30 🔍		 III [™]_± 			
	Outside MPI	MPI_Isend	MPI_Irecv	MPI_Wait	MPI_Comm_rank 🚖 👘	THREAD 1.57.1	59.30 %	0.18 %	0.37%	40.14 %	0.00 % ^
THREAD 1.1.1	60.48 %	0.19 %	0.38 %	38.95 %	0.00 %	THREAD 1.58.1	59.27 %	0.26 %	0.47 %	39.99 %	0.00 %
THREAD 1.2.1	61.05 %	0.25 %	0.49 %	38.21 %	0.00 %	THREAD 1.59.1	71.24%	0.20 %	0.32 %	28.24 %	0.00 %
THREAD 1.3.1	60.59 %	0.20 %	0.38 %	38.83 %	0.00 %	THREAD 1.60.1	65.51 %	0.21%	0.36 %	33.92 %	0.00 %
THREAD 1.4.1	69.76 %	0.21 %	0.33 %	29.70 %	0.00 %	THREAD 1.61.1	68.01 %	0.20 %	0.32 %	31.48 %	0.00 %
THREAD 1.5.1	70.49 %	0.20 %	0.32 %	28.98 %	0.00 %	THREAD 1.62.1	70.93 %	0.21 %	0.33 %	28.53 %	0.00 %
THREAD 1.6.1	61.64 %	0.19 %	0.34 %	37.83 %	0.00 %	THREAD 1.63.1	62.03 %	0.22 %	0.41 %	37.34 %	0.00 %
THREAD 1.7.1	57.80 %	0.27 %	0.49 %	41.44 %	0.00 %	THREAD 1.64.1	70.68 %	0.16 %	0.28 %	28.88 %	0.00 %
THREAD 1.8.1	59.92 %	0.16 %	0.34 %	39.58 %	0.00 %	THREAD 1.65.1	100 %	-	-	-	-
THREAD 1.9.1	65.61 %	0.26 %	0.35 %	33.77 %	0.00 %	THREAD 1.66.1	100 %	-	-	-	-
THREAD 1.10.1	60.66 %	0.34 %	0.44 %	38.56 %	0.00 %	THREAD 1.67.1	100 %	-	-	-	-
THREAD 1.11.1	71.59 %	0.30 %	0.36 %	27.74%	0.00 %	THREAD 1.68.1	100 %	-	-	-	-
THREAD 1.12.1	64.85 %	0.34 %	0.41 %	34.40 %	0.00 %						
THREAD 1.13.1	62.65 %	0.33 %	0.42 %	36.60 %	0.00 %	Total	4,851.66 %	19.03 %	27.11 %	1,902.01 %	0.19 %
THREAD 1.14.1	69.75 %	0.28 %	0.36 %	29.61 %	0.00 %	Average	71.35 %	0.30 %	0.42 %	29.72 %	0.00 %
THREAD 1.15.1	64.46 %	0.30 %	0.42 %	34.82 %	0.00 %	Maximum	100 %	0.49 %	0.65 %	41.44 %	0.00 %
THREAD 1.16.1	67.09 %	0.25 %	0.33 %	32.33 %	0.00 %	Minimum	57.80 %	0.16 %	0.28%	5.99 %	0.00 %
THREAD 1.17.1	71.52 %	0.32 %	0.41 %	27.75 %	0.00 %	StDev	11.99 %	0.07 %	0.08 %	9.94 %	0.00 %
THREAD 1.18.1		0.30 %	0.40 %	26.51 %	0.00 % ^	Avg/Max	0.71	0.61	0.65	0.72	0.62 🗸
<					× ×	<					<>

For the study of the statistics we exclude the I/O processes (scripting)
Maximum value: 93.21% (communication efficiency)
Average value: 69.55% (parallel efficiency)
Avg/max value: 74.6% (global load balance)
Note: we study just a small part of the whole execution

Trace Analysis

Communication matrixThe previous mentioned mapping from Peter Johnsen is validated

THREAD 1.55.1 THREAD 1.46.1 = 0

Trace Analysis – End of the trace

There is communication between the write tasks (last four). All the processes wait till the write tasks finish for the case of I/O quilting.

New window #8 @ wrf_6_hours_papi_quilting_o3_big_buffer.chop5.prv 🔍 💿 🗙 Running 174,349,230,396 ns 184,632,141,220 ns

Conclusions

- (Coptimize first your application through the provided options, you can be surprised
- **(** Be careful about the combination of the optimization options
- (CDifferent number of processors and workload does not mean that they can be optimized with the same approach
- (Paraver can provide a lot of insight information about the behavior of an earth science model
- (Integrate new technologies

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 2: HPC ENVIRONMENT TUTORIAL

Outline

(Connect with SSH to Mare Nostrum 3
(Interact inside Mare Nostrum 3
(Compile and run serial program
(Compile and run parallel program
(Cancel a job
(Copy results to your local machine

(Basic visualization

- Ncview
- Panoply

Users in Mare Nostrum

(One user for each student

- Username: nct010[01-15]
- Password: NCT.2013.[01-15]

(Two folders

- Home: /gpfs/home/nct00/nct010XX/
- Projects: /gpfs/projects/nct00/nct010XX/ (working folder)

In the hands on, when we talk of nct010XX, replace by your number !!!

Windows or Linux

(With Linux, no extra work is needed

(With Windows, need to install

- SSH terminal: putty
 - <u>http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html</u>
- X Windows Manager: Xming
 - http://sourceforge.net/projects/xming/files/Xming/6.9.0.31/Xming-6-9-0-31-setup.exe/download

Connect / Interact with SSH to MN3

- (Open a terminal
- (Туре
 - ssh -X nct010XX@mn1.bsc.es
- (List your home folder
 - Is
- (Create folder in projects
 - mkdir /gpfs/projects/nct00/nct010XX/
- (Copy exercises in your project folder
 - cp -r /gpfs/projects/nct00/nct00001/PRACE-Course /gpfs/projects/nct00/nct010XX/
- (Verify the X windows is working properly
 - xeyes, xclock...
- (Open text a editor (vi, emacs...)

Modifiying .bashrc

(In .bashrc we define variables and locations programs

(Edit your .bashrc (with emacs or vi)

emacs ~/.bashrc

(Paste these definitions

```
#NETCDF PROCESSING
export PATH=$PATH:/qpfs/apps/MN3/NETCDF/3.6.3/bin
export PATH=$PATH:/gpfs/apps/MN3/CDO/1.5.9/bin
export PATH=$PATH:/gpfs/apps/MN3/NCO/4.2.3/bin
export PATH=$PATH:/gpfs/apps/MN3/NCVIEW/2.1.2/bin
export LD LIBRARY PATH=$LD LIBRARY PATH:/gpfs/apps/MN3/NETCDF/3.6.3/lib:/gpfs/apps/MN3/NETCDF/4.1.3/lib
export LD LIBRARY PATH=$LD LIBRARY PATH:/qpfs/apps/MN3/UDUNITS/2.1.24/lib:/qpfs/apps/MN3/UDUNITS/1.12.11/lib
#IMAGES
export PATH=$PATH:/qpfs/apps/MN3/IMAGEMAGICK/6.8.1-9/bin
#GRADS
export PATH=$PATH:/gpfs/apps/MN3/GRADS/2.0.2/bin
export GADDIR=/gpfs/apps/MN3/GRADS/2.0.2/data/
# NCL
export NCARG ROOT=/qpfs/apps/MN3/NCL/6.1.2
export PATH=$PATH:/gpfs/apps/MN3/NCL/6.1.2/bin
export
LD LIBRARY PATH=/qpfs/apps/MN3/PROJ/4.8.0/lib/:/qpfs/apps/MN3/GDAL/1.9.2/lib/:/qpfs/apps/MN3/HDF5/1.8.10/lib:/qpfs/apps/MN3/SZ
IP/2.1/lib/:$LD LIBRARY PATH
#R
export PATH=$PATH:/gpfs/apps/MN3/R/2.15.2/bin
#PANOPLY
export PATH=$PATH:/gpfs/apps/MN3/PANOPLY/3.1.7/
#MAPGENERATOR
export PATH=/qpfs/apps/MN3/PYTHON/2.7.3/bin/:$PATH
export LD LIBRARY PATH=$LD LIBRARY PATH:/gpfs/apps/MN3/INTEL/mkl/lib/intel64
```


Compile and run serial program

- (Open a terminal
- (Log MN3
- (Change dir to example_serial
- (Compile
 - make
- (Submit job
 - bsub < submit.cmd</p>

(Analyze outputs (with vi or emacs...)

- vi "job_id".err
- vi "job_id".out

Compile and run parallel program

- (Open a terminal
- (Log MN3
- (Change dir to example_parallel
- (Compile
- (Submit job
- (Analyze outputs
- (Run the example with 12 cores
 - Change total_tasks in submit.cmd
- (Analyze outputs

Cancel a job

- (Open a terminal
- (Log MN3
- (Change dir to example_parallel_cancel
- (Compile
- (Submit job
- (Analyze outputs
- (Queue jobs
 - bjobs
- (Identify your job
 - bjobs ang get the job_id
- (Kill job
 - bkill "job_id"

Job with Netcdf Library

- (Copen a terminal
- (Log MN3
- (Change dir to example_create_netcdf)
- (Open Makefile and analyze it
- (Compile
- (Submit
- (Open netcdf file with ncview
 - ncview simple_xy.nc
- (Open netcdf with ncdump
 - ncdump -h simple_xy.nc
 - Analyze header
- (Copy netcdf file in your local Machine
 - From local: scp your nct010XX@mn1.bsc.es:/path/simple_xy.nc .

000	Ncview 2						
Noview 2.1.1 David W. Pierce 1 Aug 2011							
variable=data							
No scan axis							
displayed range: 0 to 71							
Current: (⊨9, j=0) 9 (x=9, y=0)							
Quit 🖘 1 📢 4 🔢 🕨 💓 Edit ? Delay: Opts							
3gauss Inv P Inv C M X25 Linear Axes Range Bi-lin Print							
ó	10	20	30	40	50	60	70
Var:		lata]				
Dim:	Name		Min:	Current:	Max:		Units:
Y:	x		0	-Y-	5		
X:	у		0	-X-	11		
		00					
					_		
		-			_		

Basic Visualization - NCVIEW

(Open WRF file with NCVIEW

- cd /gpfs/projects/nct00/nct010XX/PRACE-Course/visualizationhands_on
- ncview wrfout_d01_2012-09-16_12:00:00
- display 2D variables
 - T2
 - U10
 - V10
- Display 3D variables
 - T
 - W
- Use another color palette
- Change range values
- Plot a time series of two points

Basic Visualization - PANOPLY

(Example on Panoply

- Open wrfout_d01 netcdf file
- Open a GRIB file

(To open panoply.

- Run ./panoply.sh

(WRF File

- Choose another view (regional is better).
- Generate plot of T2
- Generate KMZ with U10

(CGRIB File

- Display "Temperature @ Ground or water surface"

Barcelona Supercomputing Center Centro Nacional de Supercomputación

> Session 2: Application cases Weather Research Forecasting Model (WRF)

Nucleus for european modelling of the ocean (NEMO)

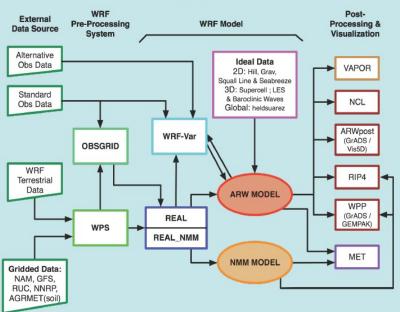
Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 2: WEATHER RESEARCH AND FORECASTING MODELLING SYSTEM (WRF)

Outline

(Application case: the meteorological model Weather and Research Forecasting System (WRF)

- Overview of WRF model (based on the online tutorial of the model)
- Model Hands-on
 - Build and compile
 - Configuration
 - Execution


What is WRF?

(Weather Reasearch & Forecasting (WRF) Model

- Mesocale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs.
- Suitable for a broad spectrum of meteorological applications across scales ranging from meters to thousands of kilometers.
- It is a supported "community model" <u>www.wrf-model.org</u>
- Development led by NCAR, NOAA/GSD and NOAA/NCEP/EMS with partnerships at AFWA, FAA, NRL, and collaborations with universities and other government agencies in the US and worlwide.

Modelling System Components

WRF Modeling System Flow Chart

- Large set of physical parameterizations
- Capabilities for data assimilation

Supercomputing Center Centro Nacional de Supercomputación WRF Pre-processing System (WPS)
 WRF-VAR
 WRF Model
 Post-processing and visualization tools

Wide information in WRF webpages:

www.mmm.ucar.edu/

www.dtcenter.org/wrfnmm/users/

Documentation, online tutorials, source code...

WRF Model Characteristics

(We focus on the WRF-ARW model

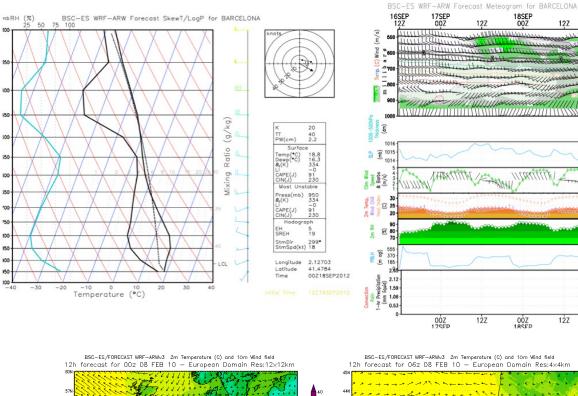
- Solves the Fully compressible, nonhydrostatic, Euler equations
- Terrain following hydrostatic pressure coordinate
- Arakawa C-grid
- The model uses higher-order numerics
 - Runge-Kutta 2nd- and 3rd-order time integration schemes
 - 2nd- to 6th-order advection schemes in both horizontal and vertical directions
- It uses a time-split small step for acoustic and gravity-wave modes
- The dynamics conserves scalar variables
- Modelling System contains: initialization programs, WRF model, nesting capabilities.

Software requirements

- (Fortran 90 or 95 and C compiler
- (perl 5.04 or later
- (If MPI and OpenMP compilation is desired, MPI or OpenMP libraries are required
- (WRF I/O API supports netCDF, pnetCDF, PHD5, GriB 1 and GriB 2 formats
- (UNIX utilities: csh and Bourne shell, make, M4, sed, awk, and the uname command

Products

42N


39N

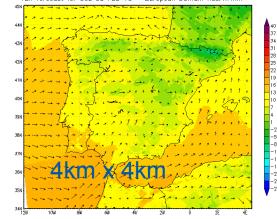
338

......

Centro Nacional de Supercomputación

12km x 12 km

3


28 25 22

19 16 13

10

2ÓE 2\$E

20

00Z

20

12Z

00Z

37

34

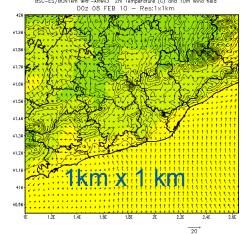
-8

-14

-17

-20

-23 -76



19SEP 00Z

12Z

18SEP 00Z

×111

40 37 34 28 25 22 19 16 13 10 -2 -5 -8 -11 -14 -17 -20 -23 -28

(This is not a WRF tutorial – for a full description visit online tutorials

(Objective:

- Acces to MN3 supercomputer
- Build and compile WRF modelling system
- Edit and configure a model run
- Submit a batch job
- Monitor job execution
- Visualize model input and output

Model Hands-on

(Get the source code:

- Already copied in MN3:
- Go to the wrf folder
 - cd /gpfs/projects/nct00/nct010XX/PRACE-Course/wrf/source/

(Unpack the code:

- gunzip WRFV3.5.1.TAR.gz
- tar -xf WRFV3.5.1.TAR

(This will create the WRFV3/ directory

Build and compile WRF

Move into WRFV3 directory

- cd WRFV3

Scripts to compile and configure the model

- clean: script to clean created files, executables
- compile: script for compiling WRF code
- configure: script for configure the configure.wrf file for compile

Define Shell environment

export NETCDF=/gpfs/apps/MN3/NETCDF/3.6.3

Configure WRF environment

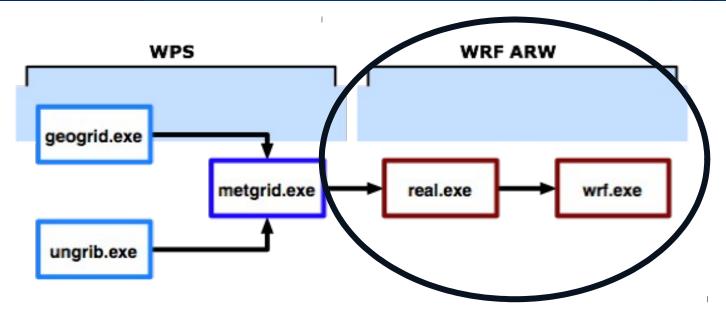
- ./configure
- Select option 19. Linux x86_64 i486 i586 i686, ifort compiler with icc (dmpar)
- Compile for nesting? Select basic (1)
- File configure.wrf will be created
 - Copy configure.wrf from /gpfs/projects/nct00/nct00001/PRACE-Course/wrf/source/WRFV3 if you have problems

Build and compile WRF

(Edit configure.wrf to speed-up compilation

- Set FCOPTIM= -00

(Compile WRF for real data cases


- Set the following environment variable before compile:
 - Export WRF_EM_CORE=1
- ./compile em_real >& compile.log
- Check the compile.log file for any errors.

(If compilation is successful, it will create the following executables in the WRFV3/main/ directory

- ndown.exe
- nup.exe
- real.exe
- wrf.exe

Model Flow

((real.exe

 This program vertically interpolates the met_em* files (generated by metgrid.exe), creates boundary and initial condition files, and does some consistency checks.

((wrf.exe

- Generates the model forecast.

Preparing a model run – input files

(Get input files:

- Already copied in MN3:
 - /gpfs/projects/nct00/nct010XX/PRACE-Course/wrf/input_data
 - namelist.input
 - met_em.d01.2012-09-16_12:00:00.nc
 - met_em.d01.2012-09-16_18:00:00.nc

(Copy input files in WRFV3/test/em_real/

(Edit namelist.input

- Set Hours = 06, end_day = 16, end_hour = 18

(Visualize input files met_em.d01...

- ncview met_em.d01.2012-09-16_12:00:00.nc

Preparing a model run – First step REAL.EXE

Get submit script file:

- Already copied in MN3:
 - /gpfs/projects/nct00/nct010XX/PRACE-Course/wrf/input_data
 - submit_real.cmd
- Copy submit_real.cmd to WRFV3/test/em_real

[[Edit submit_real.cmd:

- Set total_tasks = 4

(Submit real pre-process:

bsub submit_real.cmd

(Monitor job status: bjobs

JOBIDNAMEUSERSTATETIME TIMELIMIT CPUSNODES NODELIST(REASON)4800310.REAL bsc32771PENDING0:0012:0041 (Priority)

Check with ncview wrfinput_d01 and wrfbdy_d01 are created

Preparing a model run – Second step WRF.EXE

(Get submit script file:

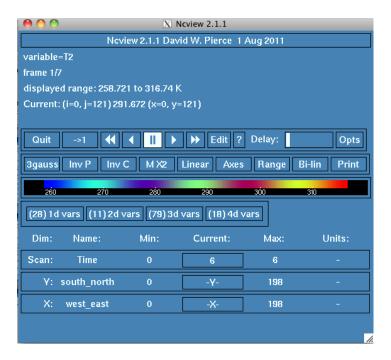
- Already copied in MN3:
 - /gpfs/projects/nct00/nct010XX/PRACE-Course/wrf/input_data
 - submit_wrf.cmd
- Copy submit_wrf.cmd to WRFV3/test/em_real

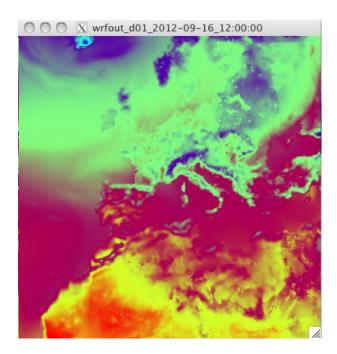
[Edit submit_wrf.cmd:

- Set total_tasks = 24
- **II** Submit wrf process:
 - bsub submit_wrf.cmd

(Monitor job status: bjobs

(Check rsl.out.0000 and wrfout_d01_2012-09-16_12:00:00)


- At the end or rsl.out... "SUCCESS COMPLETE WRF"



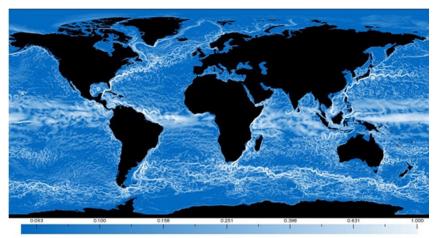
Visualize WRF output

(Use noview to visualize the wrf output netcdf file:

- wrfout_d01_2012-09-16_12:00:00

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 2: Nucleus for european modelling of the ocean (nemo)


Outline

(Application case: NEMO (Nucleus for European Modelling of the Ocean) is a state-of-the-art modeling framework for oceanographic research, operational oceanography seasonal forecast and climate studies.

(More information in http://www.nemo-ocean.eu/

(Overview of NEMO model and Hands-on

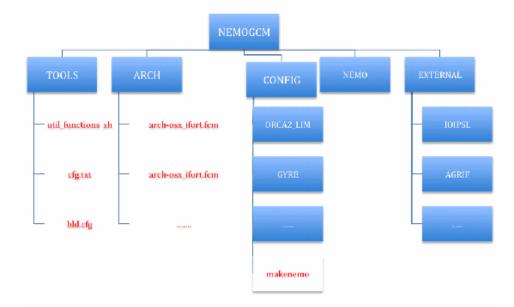
- Build and compile
- Execution
- Visualize results

Surface current speed (m/s)

What is NEMO?

(NEMO is an ocean model with several modules associated with ocean processes.

(NEMO includes 5 major components


- the blue ocean (ocean dynamics, NEMO-OPA)
- the white ocean (sea-ice, NEMO-LIM)
- the green ocean (biogeochemistry, NEMO-TOP);
- the adaptative mesh refinement software (AGRIF);
- the assimilation component NEMO_TAM

(In the hands-on, we will work with NEMO-OPA and NEMO-LIM.

Software requirements

- (Fortran 90 or 95
- (MPI if parallel execution is desired
- (Perl
- (Input/Ouput netCDF
- (UNIX utilities: csh and Bourne shell, make, M4, sed, awk, and the uname command

Output paralel behaviour

In paralel execution, each process writes a piece of the netcdf.

 -rw-r--r--1
 bsc32353
 bsc32
 11368352
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_grid_T_0000.nc

 -rw-r--r--1
 bsc32353
 bsc32
 10895152
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_grid_T_0001.nc

 -rw-r--r--1
 bsc32353
 bsc32
 10895152
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_grid_T_0002.nc

 -rw-r--r--1
 bsc32353
 bsc32
 10895152
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_grid_T_0003.nc

 -rw-r--r--1
 bsc32353
 bsc32
 10421952
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_grid_T_0004.nc

 -rw-r--r--1
 bsc32353
 bsc32
 10421952
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_grid_T_0005.nc

 -rw-r--r--1
 bsc32353
 bsc32
 10421952
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_grid_T_0005.nc

 -rw-r--r--1
 bsc32353
 bsc32
 10421952
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_grid_T_0006.nc

 -rw-r--r--1
 bsc32353
 bsc32
 10895152
 Dec
 3
 17:52
 ORCA2_5d_00010101_00011231_gri

(At the end of the execution, we need a tool to gather them all (../../.TOOLS/REBUILD_NEMO/rebuild_nemo outputs/ORCA2_5d_00010101_00011231_grid_T 8

-rw-r--r-- 1 bsc32353 bsc32 641622864 Dec 3 18:04 ORCA2_5d_00010101_00011231_grid_T.nc

Compilation

Compilations are done with MAKENEMO utility

./makenemo -n
Usage : makenemo [-h] [-n name] [-m arch] [-d dir1 dir2] [-r conf] [-s Path] [-e Path] [-j No] [-v No]
-h : help
-h institute : specific help for consortium members
-n name : config name, [-n help] to list existing configurations
-m arch : choose compiler, [-m help] to list existing compilers
-d dir : choose NEMO sub-directories
-r conf : choose reference configuration
-s Path : choose alternative location for NEMO main directory
-e Path : choose alternative location for MY_SRC directory
-j No : number of processes used to compile (0=nocompilation)
-v No : set verbosity level for compilation [0-3]
-t dir : temporary directory for compilation

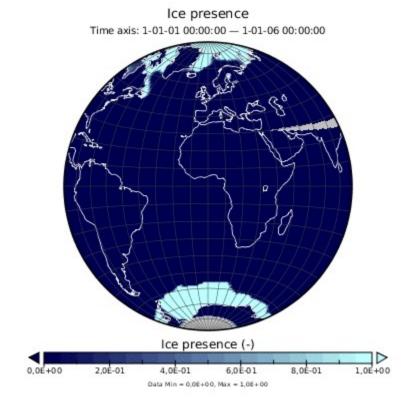
Compiling GYRE, with ifort on linux to create a MY_GYRE configuration

- makenemo –m ifort_linux –r GYRE -n MY_GYRE

Recompile it

- makenemo

Now, create and compile ORCA_LIM3


makenemo –n ORCA_LIM3 (and answer)

Now, create and compile ORCA2_LIM_2_2, add and delete keys, based on ORCA2_LIM

- makenemo –n ORCA2_LIM_2_2 -r ORCA2_LIM add_key "key_mpp_mpi key_nproci=2 key_nprocj=2" del_key "key_agrif" (and answer)
- To remove a bad configuration
 - makenemo –n ORCA2_LIM_2_2 clean_config (and answer)

Products

At the end of this session, you should be able to reproduce this visualization

183

Hands On - Compilation

- (Enter in Nemo Folder
 - cd /gpfs/projects/nct00/nct010XX/
- (C cd nemo/dev_v3_4_STABLE_2012/NEMOGCM/CONFIG/

(Compile the model

(makenemo -m ifort_MN3 -n ORCA2_LIM_PRACE -r ORCA2_LIM

(Check compilation

- nemo/dev_v3_4_STABLE_2012/NEMOGCM/CONFIG/ORCA2_LIM_PRACE/BLD/bin/nemo.exe
- nemo/dev_v3_4_STABLE_2012/NEMOGCM/CONFIG/ORCA2_LIM_PRACE/BLD/bin/server.exe

Hands On – Running the model

Enter the experiment folder

- cd nemo/dev_v3_4_STABLE_2012/NEMOGCM/CONFIG/ORCA2_LIM_PRACE/MY_WORK

Untar and uncompress the test case files

- tar -xvf ../../../ORCA2_LIM_nemo_v3.4.tar
- gunzip *

cd ../EXP00

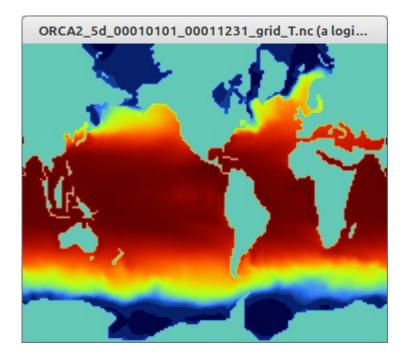
Link with the test case files

- In -sf ../MY_SRC/* .

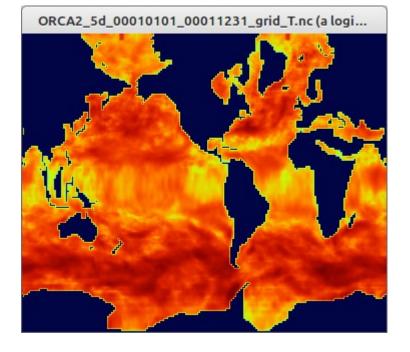
Copy a MN3 submit file

cp ../../ORCA2_LIM_BSC/EXP00/bsub_nemo.cmd .

Submit job


bsub < bsub_nemo.cmd</p>

Vait for the results and check netcdf files are created


Gather results

- ./../../TOOLS/REBUILD_NEMO/rebuild_nemo outputs/ORCA2_1d_00010101_00011231_grid_T 32
- ../.././TOOLS/REBUILD_NEMO/rebuild_nemo outputs/ORCA2_1m_00010101_00011231_grid_T 32
- ../../../TOOLS/REBUILD_NEMO/rebuild_nemo outputs/ORCA2_1y_00010101_00011231_grid_T 32
- ../.././TOOLS/REBUILD_NEMO/rebuild_nemo outputs/ORCA2_5d_00010101_00011231_grid_T 32
- ./././TOOLS/REBUILD_NEMO/rebuild_nemo outputs/ORCA2_5d_00010101_00011231_grid_U 32
- ../.././TOOLS/REBUILD_NEMO/rebuild_nemo outputs/ORCA2_5d_00010101_00011231_grid_V 32
- ../.././TOOLS/REBUILD_NEMO/rebuild_nemo outputs/ORCA2_5d_00010101_00011231_icemod 32

SST

Wind Speed Module 10m

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 3: Visualization and hands on

Objective

(Numerical models produce a huge amount of data on a variety of formats

- Binary
- NetCDF
- ASCII
- HDF5
- GRIB

...

(We need tools to analyse and visualise them

(In this section we will introduce some utilities freely available and widely used within the Earth Sciences community

(Many more are available...

Many Packages exists out there

(Visualization platforms

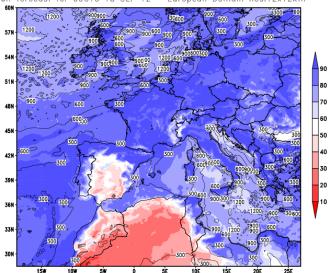
- NCVIEW
- PANOPLY
- GRADS
- NCL
- Python Visualization

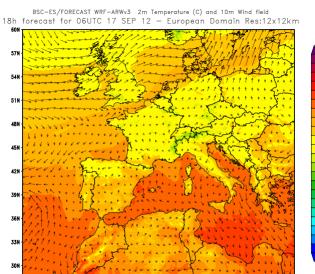
(Analytics packages

- CDO
- NCO
- R
- NCL

Visualization GrADS: Grid Analysis and Display System

- (Interactive desktop tool that is used for easy access, manipulation, and visualization of earth science data.
- (Supports many data file formats, including binary (stream or sequential), GRIB (version 1 and 2), NetCDF, HDF (version 4 and 5), and BUFR (for station data).
- Freely distributed over the Internet.
- GrADS handles grids that are regular, non-linearly spaced, gaussian, or of variable resolution.
- (Data from different data sets may be graphically overlaid, with correct spatial and time registration.
- (Operations are executed interactively by entering FORTRAN-like expressions at the command line or batch commands to generate pictures.
- Data may be displayed using a variety of graphical techniques: line and bar graphs, scatter plots, smoothed contours, shaded contours, streamlines, wind vectors, grid boxes, shaded grid boxes, and station model plots.
- GrADS has a programmable interface (scripting language) that allows for sophisticated analysis and display applications.


http://www.iges.org/grads/


Grads tutorial: http://www.iges.org/grads/gadoc/tutorial.html

GRADS Examples

BSC-ES/FORECAST WRF-ARWv3 Surface RH (%) and PBLH (m) 36h forecast for OOUTC 18 SEP 12 - European Domain Res:12x12km

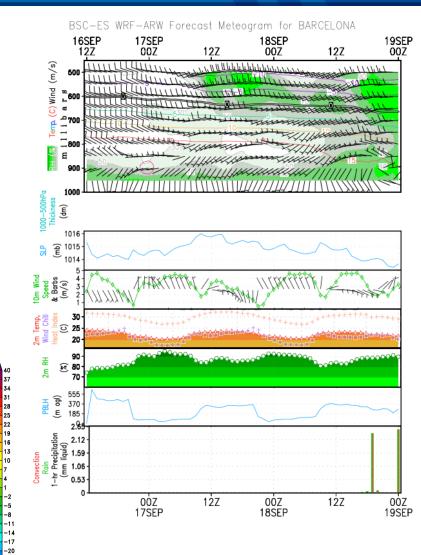
5E

1ÔE

15W

10W

5W

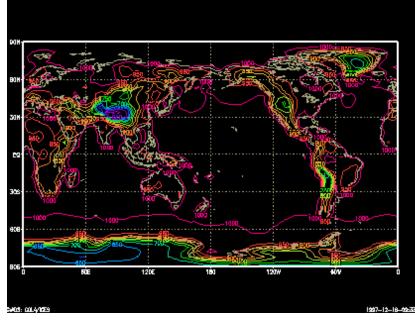

-23 -26

20E

15E

20

25E


Visualization GrADS: examples

(We need three files:

- Binary data: .dat
- Descriptor file: .ctl
- Script: .gs

(From the control file a default display can be created using simply :

- > open model.ctl
- > d ps

GrADS: examples

Copy visualization handson/grads Analyze *.ctl file

Execute: grads

pen wrfout....ctl

View variables, times, domain.

- q file extracts file content
- q dims provide information on projection
- d t2
- Set gxout shaded
- d t2
- d skip(u10,14,14);v10

View the example with T2.

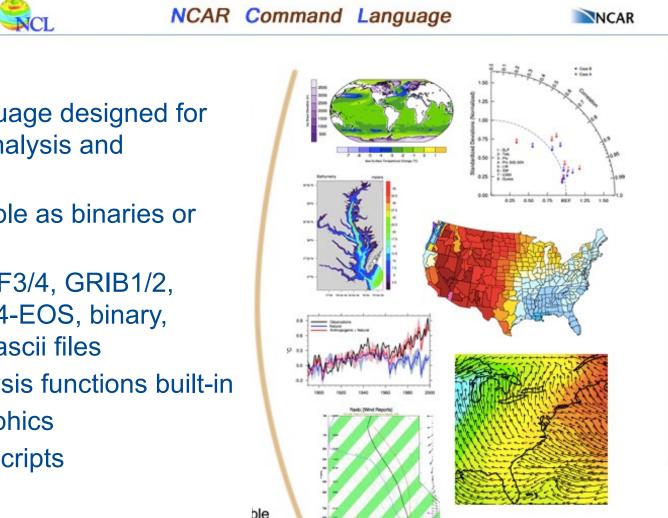
- Generate picture (grads -blc t2.gs).
- Open picture (display T2.gif)

Make a zoom over Iberian Peninsula

- Use 'set lat 34 45.05'
- Use 'set lon -12 4.5'

Modify the example to show T2 in Celsius instead of Kelvin

- Hint: T°K=T°C + 273.15


Create a plot with PSFC

Create a plot with wind vectors u10,v10

Hint: use function _ set gxout vector and d skip(u10m,10,10);v10m

Visualization NCL: NCAR Command Language

- Interpreted language designed for scientific data analysis and visualization
- Portable, Available as binaries or open source
- Supports netCDF3/4, GRIB1/2, HDF-SDS, HDF4-EOS, binary, shapefiles, and ascii files
- **I** Numerous analysis functions built-in **(**High quality graphics **(** Many example scripts

(http://www.ncl.ucar.edu/

Supercomputing entro Nacional de Supercomputación

©2012 UCAR | Privacy Policy | Terms of Use | Contact the Webmaster | Sponsored by NSF

NCL: scripts

(Large number of examples at the website

(<u>http://www.ncl.ucar.edu/Applications/</u>

- Ready for several datasets
- Different Map projections
- Examples for specific models
- Allow data analysis

(<u>http://www.ncl.ucar.edu/Applications/wrf.shtml</u>

Examples for WRF outputs

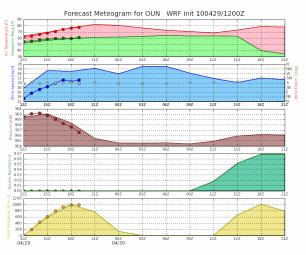
NCL: examples

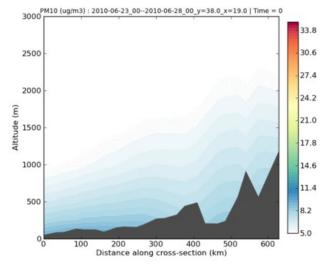
(Try some examples:

/home/nct/nct00002/PATC-Course/visualization-hands_on/NCL

NCL export NCARG_ROOT=/gpfs/apps/MN3/NCL/6.1.2 export PATH=\$PATH:/gpfs/apps/MN3/NCL/6.1.2/bin

Execute: ncl wrf_script.ncl



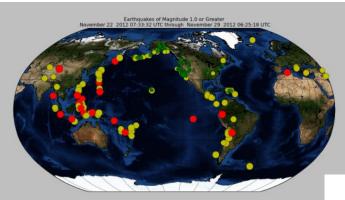

Python Map Generator

(Using Python language to plot maps and time series

(Requirements

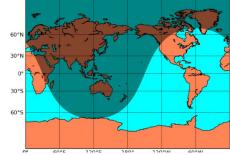
- Python
- Matplotlib 1.0 or greater
- Basemap 0.9 or greater
- Nio or scipy/netcdf (some Python library for reading in netCDF files is necessary)

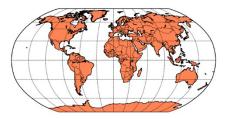



python

Python Map Generator

(Many options in map backgrounds and projections





Barcelona Supercomputing Center Centro Nacional de Supercomputación

Day/Night Map for 09 Dec 2013 15:51:48 (UTC)

Python Map Generator

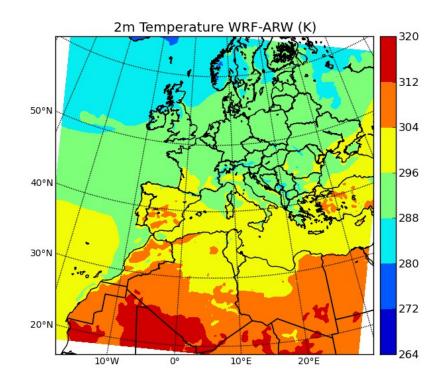
(To run a script

python script.py

```
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
```

```
map.drawcoastlines()
```

plt.show()

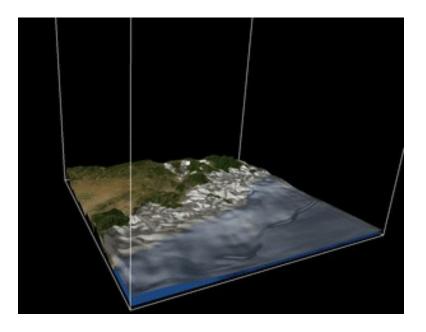

Python Map Generator Example

- (Try some examples:
 - /home/nct/nct00002/PATC-Course/visualizationhands_on/MapGenerator

(To run the WRF example

- python display_wrf_T2.py
- display wrf_T2.png
- (Modify the example to show Pressure (PSFC)

Plot the third hour of the file.



3D Visualization

(3D Visualization is a nice way to show and understand results

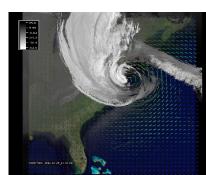
(Many options to make renders

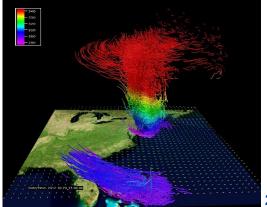
- Free software
 - Vapor
 - Visit
 - Paraview
 - IDV
- Commercial software
 - Maya
 - Avizo Green

(Be careful, usually big amount of data is needed to get nice volumes (big amount of vertical layers).

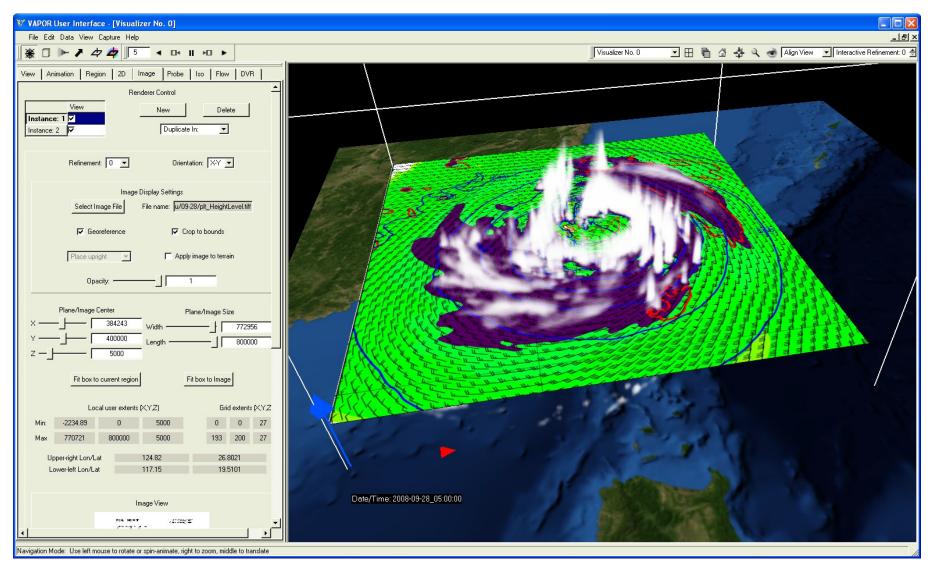
3D Visualization

- (Data needs to be in high resolution
- **(** Sometimes format is a mess
 - Some programs don't understand sigma layers
 - Others needs coordinates in a specific format
- **(**Conversion with NETCDF operators is sometimes required
- (A powerful computer with a powerful graphic card (NVIDIA Quadro) is required



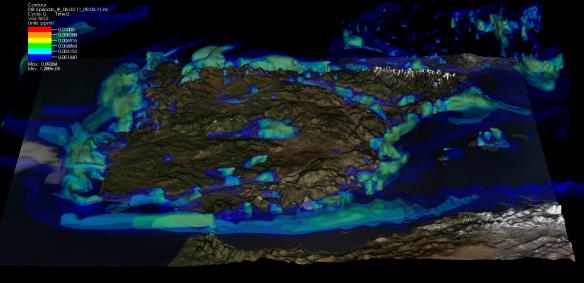

3D Visualization - Vapor

(Vapor is a free software designed to show 3D outputs(Features

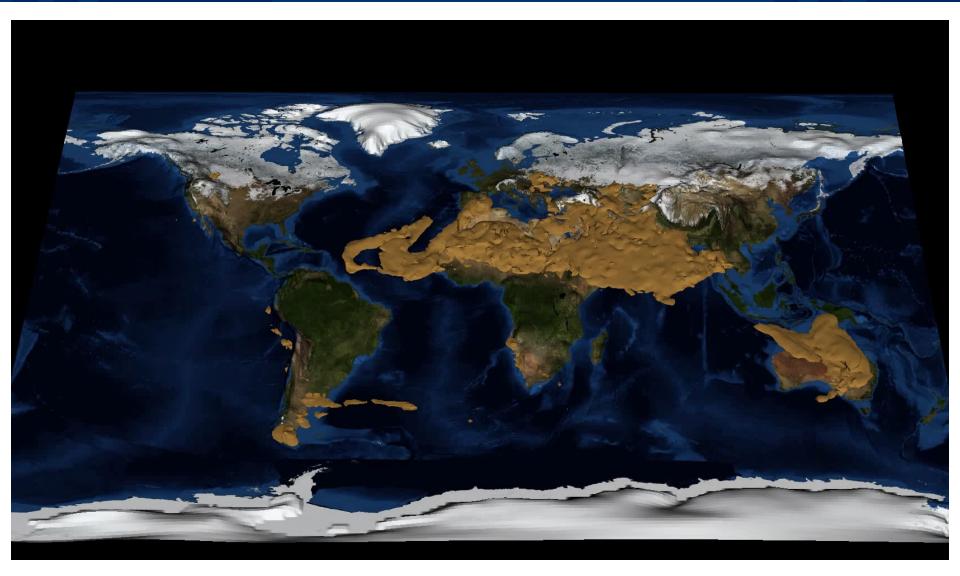

- A visual data discovery environment tailored towards the specialized needs of the astro and geosciences CFD community
- A desktop solution capable of handling terascale size data sets
- Advanced interactive 3D visualization tightly coupled with quantitative data analysis
- Support for multi-variate, time-varying data
- Integrated with Python.
- Support for 3D visualization of WRF-ARW datasets
- (http://www.vapor.ucar.edu/

3D Visualization - Vapor




Vislt Software

- (VisIt is a free interactive parallel visualization and graphical analysis tool for viewing scientific data on Unix and PC platforms.
- (Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images for presentations.
- (I It can be used to visualize scalar and vector fields defined on two- and three-dimensional (2D and 3D) structured and unstructured meshes.
- (Vislt was designed to handle very large data set sizes in the terascale range and yet can also handle small data sets in the kilobyte range.


Vislt with CMAQ CTM Model

Vislt with NMMB-BSC Dust

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 3: analysis packages and hands on

Objective

(Numerical models produce a huge amount of data on a variety of formats

- Binary
- NetCDF
- ASCII
- HDF5
- GRIB

...

(We need tools to analyse and visualise them

(In this section we will introduce some utilities freely available and widely used within the Earth Sciences community

(Many more are available...

(Visualization platforms

- NCVIEW
- PANOPLY
- GRADS
- NCL
- MapGenerator

Analytics packages

- CDO
- NCO
- R
- NCL

Analytics CDO: Climate Data Operators

Collection of command line operators to manipulate and analyse Climate and NWP model data

Supports data formats GRIB1/2, netCDF 3/4, EXTRA and IEG

More than 600 operators available

- Information on datasets
- Selection of specific data from a file
- Comparison
- Modification of attributes, names, variables
- Arithmetic operations
- Statistical values
- Regression
- Interpolation
- Transformations

It runs on Linux, Unix, MAC OS, Windows

CDO: examples

((http://www.nco.ncep.noaa.gov/pmb/codes/nwprod/sorc/rtofs_c do-1.4.0.1.fd/cdo-1.5.0/doc/cdo_refcard.pdf

(Syntax: cdo Operator1 [-Operator2] filein.nc fileout.nc

(C Example: cdo info wrfout_d01_2012-09-16_12:00:00

Warning	(define_all	_grids) :	Time va:	rying grids	unsupp	port	ed, using (grid at time	step 1!		
-1	: Date	Time	Level	Gridsize	Miss	:	Minimum	Mean	Maximum	: Parameter	name
1	: 2012-09-16	12:00:00	0	39601	0	:	1.0000	13.923	24.000	: LU_INDEX	
2	: 2012-09-16	12:00:00	0	37	0	:	0.0010000	0.48470	0.99750	: ZNU	
3	: 2012-09-16	12:00:00	0	38	0	:	0.0000	0.48511	1.0000	: ZNW	
4	: 2012-09-16	12:00:00	0	4	0	:	0.050000	0.62500	1.5000	: ZS	
5	: 2012-09-16	12:00:00	0	4	0	:	0.10000	0.50000	1.0000	: DZS	
6	: 2012-09-16	12:00:00	1	39800	0	:	-10.391	1.6235	16.171	: U	
7	: 2012-09-16	12:00:00	2	39800	0	:	-11.149	1.7782	16.998	: U	
8	: 2012-09-16	12:00:00	3	39800	0	:	-11.836	1.9252	17.981	: U	
9	: 2012-09-16	12:00:00	4	39800	0	:	-12.321	2.0620	19.082	: U	
10	: 2012-09-16	12:00:00	5	39800	0	:	-12.966	2.1875	19.397	: U	
11	: 2012-09-16	12:00:00	6	39800	0	:	-13.238	2.3135	19.805	: U	
12	: 2012-09-16	12:00:00	7	39800	0	:	-13.326	2.4641	20.138	: U	
13	: 2012-09-16	12:00:00	8	39800	0	:	-12.925	2.6658	20.475	: U	
14	: 2012-09-16	12:00:00	9	39800	0	:	-13.194	2.9412	20.810	: U	

CDO: examples

Select a variable from a netcdf file (selvar, var):

cdo selvar,T2 wrfout_d01_2012-09-16_12:00:00 T2.nc

(Compute the temporal mean of a variable (tim*mean*):

cdo timmean T2.nc T2timmean.nc

Compute the spatial mean over a domain of a variable (fld*mean*):

cdo output --fldmean T2timmean.nc

- Execute the above three example at once (Operator1 – Operator2 -...):

cdo selvar,T2 -timmean -fldmean wrfout_d01_2012-09-16_12:00:00 out.nc

CDO: examples

Apply a mask over a field:

Select mask field from file:

cdo selvar,LANDMASK wrfout_d01_2012-09-16_12:00:00 mask.nc

Apply the mask over temperature at 2 m (multiply – 1 land 0sea):

cdo mul T2.nc mask.nc T2_land.nc

Set a constant as missing value:

cdo setctomiss,0 T2_land.nc T2_land.nc

Compute the field mean over land:

cdo output --fldmean T2_land.nc

CDO: practice

(From WRF Exercice-1 output:

- Compute the maximum temperature at 2m (T2) at 18UTC 16/9/2012
- Compute total precipitation (RAINNC) over land
 - Compute wind speed at 10m (U10, V10)
 - Compute maximum wind speed at 10th model layer (U,V)

(Useful operators:

- cdo expr,'VAR1=VAR2+3;' filein.nc fileout.nc
- seltimestep, selvar, sellevel, fldmax

CDO: practice

(From WRF Exercice-1 output:

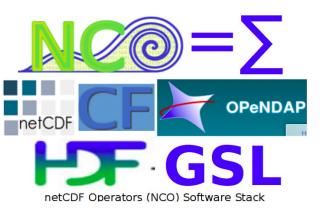
- Compute the maximum temperature at 2m (T2) at 18UTC 16/9/2012 cdo fldmax –seltimestep,7 -selvar,T2 wrfout.nc MAXT2.nc

- Compute total precipitation (RAINNC) over land cdo seltimestep,7 –selvar,RAINNC wrfout.nc RAINNC.nc cdo selvar,LANDMASK wrfout.nc MASK.nc cdo mul RAINNC.nc MASK.nc RAIN_LAND.nc cdo output –fldsum RAIN_LAND.nc

Compute wind speed at 10m (U10, V10)
 cdo selvar,U10,V10 wrfout.nc out1.nc
 cdo expr,'spd=sqrt(U10*U10+V10*V10);' out1.nc SPD.nc

Compute maximum wind speed at 10th model layer (U,V)
 cdo selvar,U,V –sellevel,10 wrfout.nc out1.nc
 cdo expr,'spd=sqrt(U*U+V*V);' out1.nc SPD.nc

Analytics NCO: netCDF Operator


Comprise a dozen standalone, command-line programs that operates netCDF files
Several operations (e.g., derive new data, average, print, hyperslab, manipulate metadata)
Output results to screen or files in text, binary, or netCDF formats
NCO aids manipulation and analysis of gridded scientific data
The shell-command style of NCO allows users to manipulate and analyze files interactively, or with simple scripts

Available programs:

- ncap2 netCDF Arithmetic Processor
- ncatted netCDF ATTribute Editor
- ncbo netCDF Binary Operator (includes ncadd, ncsubtract, ncmultiply, ncdivide)
- ncea netCDF Ensemble Averager
- ncecat netCDF Ensemble conCATenator
- ncflint netCDF FiLe INTerpolator
- ncks netCDF Kitchen Sink
- ncpdq netCDF Permute Dimensions Quickly, Pack Data Quietly
- ncra netCDF Record Averager
- ncrcat netCDF Record conCATenator
- ncrename netCDF RENAMEer
- ncwa netCDF Weighted Averager

http://nco.sourceforge.net/

NCO: examples

Select first level of a file

ncks -d bottom_top,1 wrfout.nc out.nc

Select 6 hours of a file

- ncks -d Time,1,6 wrfout.nc out.nc

Calculate T at 2m in celsius.

- ncap -s "T2=T2-273.15" wrfout.nc celsius.nc

Change variable name

- ncrename -h -O -v T2,T2_celsius celsius.nc

Subsetting a region

- ncea -d west_east,min_gridpoint,max_gridpoint -d lon, ,min_gridpoint,max_gridpoint in.nc out.nc
- IN WRF: Iberian Peninsula: ncea -d west_east,45,95 -d south_north,64,110 celsius.nc iberian.nc

[[http://jisao.washington.edu/data/nco/#example1

Analytics R: the R Project for Statistical Computing

(Free software environment for statistical computing and graphics(It includes:

- an effective data handling and storage facility,
- a suite of operators for calculations on arrays, in particular matrices,
- a large, coherent, integrated collection of intermediate tools for data analysis,
- graphical facilities for data analysis and display either on-screen or on hardcopy, and
- a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

(It runs on UNIX, Linux, Mac OS, Windows (http://www.r-project.org/

R: examples

###############

library(RNetCDF) #open.nc, var.get.nc

wrf<-open.nc('wrfout_d01.nc')

```
timeWRF<-var.get.nc(wrf,"Times")
latWRF <- var.get.nc(wrf,"XLAT")
lonWRF <- var.get.nc(wrf,"XLONG")</pre>
```

```
u10 <- var.get.nc(wrf,"U10")
v10 <- var.get.nc(wrf,"V10")
```

dim(u10)

u10[2,2,]

spd<-sqrt(u10*u10+v10*v10) dir<-atan2(u10,v10)*57.2957795+180. dir[spd<0.5]<-NA

Arrays: var[x,y,z] Vectors: var[x]

Create a variable: var<-value var<-c(1,2,3,4)

Variable dimension: dim(var)

Print variable value: var[10:15]

R: examples

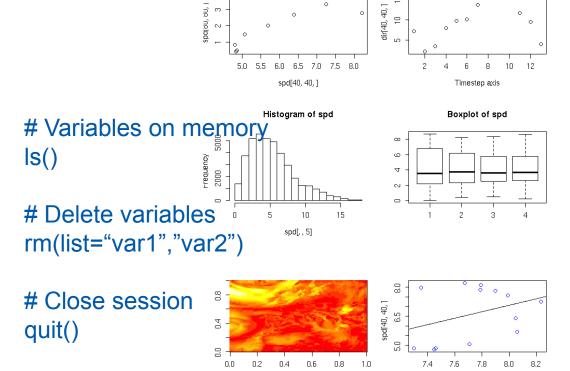

Plots: scatter plot, time evolution, histogram, boxplots par(mfrow=c(3,2))plot(spd[40,40,],spd[80,80,], main="Scatterplot of spd at 40,40 vs. spd at 80,80") plot(dir[40,40,],main="Direction time evolution",xlab="Timestep axis") hist(spd[,,5], main="Histogram of spd") boxplot(spd[,20,1:4], main="Boxplot of spd") Scatterplot of spd at 40,40 vs. spd at 80,80 Direction time evolution

Image plots image(spd[,,3])

```
# Fit line to scatter plot
plot(spd[20,20,],spd[40,40,],col="blue")
myline.fit <- lm(spd[40,40,] \sim spd[20,20,])
abline(myline.fit)
```

Statistics cor(spd[20,20,1:7],spd[40,40,1:7]) mean(spd[20,20,7])

ĥ

0

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Session 4: free hands-on

Practice on HPC environment, application, visualization and analysis

(Exercise 1: Run a WRF simulation of 12h with 24 cpus

(Exercise 2: Create an animation over time of T2 with GrADS with model output of Exercise 1

(Exercise 3: compute 12h-average temperature from model simulation of Exercise 1

(C Exercise 4: find the total amount of precipitation over the ocean from Exercise 1

(Exercise 5: compute the correlation of T at the first and fifth model layer from Exercise 1 output

www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

For further information please contact oriol.jorba@bsc.es georgios.markomanolis@bsc.es kim.serradell@bsc.es

Fill the questionnaire of the course:

http://events.prace-ri.eu/confDisplayEvaluation.py/display?confld=194