
Studying the behavior of parallel MPI applications

G. Markomanolis

INRIA, LIP, Avalon, ENS de Lyon

Working Group

1 / 98

Outline

1 Context and motivation

2 Introduction to Performance Engineering

3 Performance Application Programming Interface

4 Scalasca

5 TAU

6 PerfExpert

7 Score-P

8 Performance Analysis of Iterative Methods (PAIM)

9 Discuss about accuracy

2 / 98

Goals
I Overview of the programming tools suite
I Explain the functionality of the tools
I Presenting a tool about Performance Analysis of Iterative Methods
I Discussing about accuracy issues

3 / 98

Performance engineering workflow

Prepare application
Collect the relevant data to the
execution of the instrumented
application
Identification of performance
metrics
Presentation of results
Modifications in order to reduce
performance problems

4 / 98

Inclusive vs. Exclusive values

5 / 98

Sampling

Statistical inference of program
behaviour
Not very detailed information
Only for long-running applications
Unmodified executables

6 / 98

Instrumentation

Every event is captured
Detailed information
Processing of source-code or
executable
Overhead

7 / 98

Critical issues

Accuracy
I Intrusion overhead
I Perturbation
I Accuracy of time & counters

Granularity
I Number of measurements?
I How much information?

8 / 98

Types of profiles

Flat profile
I Metrics per routine for the instrumented region
I Calling context is not taken into account

Call-path profile
I Metrics per executed call path
I Distinguished by partial calling context

Special profiles
I Profile specific events, e.g. MPI calls
I Comparing processes/threads

9 / 98

Tracing I

Recording all the events for the demanded code
I Enter/leave of a region
I Send/receive a message

Extra information in event record
I Timestamp, location, event type
I Event-related info (e.g.,communicator, sender/receiver)

Chronologically ordered sequence of event records

10 / 98

Performance analysis procedure

Performance problem?
I Time / speedup / scalability measurements

Key bottleneck?
I MPI/ OpenMP / Flat profiling

Where is the key bottleneck?
I Call-path profiling

Why?
I Hardware counter analysis, selective instrumentation for better analysis

Scalability problems?
I Load imbalance analysis, compare profiles at various sizes function by

function

11 / 98

Performance Application Programming (PAPI)

Middleware that provides a consistent and efficient programming interface for
the performance counter hardware found in most major microprocessors
Hardware performance counters can provide insight into:

Whole program timing
Cache behaviors

...

12 / 98

Component PAPI (PAPI-C)

Motivation:
I Hardware counters for network counters, thermal & power measurement
I Measure multiple counter domains at once

Goals:
I Isolate hardware dependent code in a separable component module
I Add or modify API calls to support access to various components

13 / 98

Component PAPI (PAPI-C)

14 / 98

Scalable performance analysis of
large-scale parallel applications

Scalasca

15 / 98

Techniques

Profile analysis:
I Summary of aggregated metrics

F per function/call-path and/or per process/thread
I mpiP, TAU, PerfSuite, Vampir

Time-line analysis
I Visual representation of the space/time sequence of events
I An execution is demanded

Pattern analysis
I Search for characteristic event sequences in event traces
I Manually: Visual time-line analysis
I Automatically: Scalasca

16 / 98

Measurement event tracing & analysis

Code instrumentation
Measurements summarized by
thread & call-path during
execution
Presentation of summary analysis
Time-stamped events buffered for
each thread
Flushed to files
Trace analysis
Presentation of analysis report

17 / 98

Selective instrumentation

MPI_Init()
EPIK_PAUSE_START()
...
EPIK_PAUSE_END()
ssor(itmax)
EPIK_PAUSE_START()
...
EPIK_PAUSE_END()
MPI_Finalize()

18 / 98

Automatic instrumentation using PDT
Exclude functions
BEGIN_EXCLUDE_LIST
Exclude C function matmult
void matmult(Matrix*, Matrix*, Matrix*) C

Exclude C++ functions with prefix ’sort_’ and a
single int pointer argument
void sort_#(int *)

Exclude all void functions in namespace ’foo’
void foo::#

END_EXCLUDE_LIST

The mark # is widlcard for a routine name and the mark * is a wildcard
character
Include functions for instrumentation
BEGIN_INCLUDE_LIST/END_INCLUDE_LIST

Exclude the function EXACT from the LU benchmark
BEGIN_EXCLUDE_LIST
EXACT
END_EXCLUDE_LIST

19 / 98

NPB -MPI / LU

Studying the MPI version of the LU benchmark from the NAS Parallel
Benchmarks (NPB) suite
Summary measurement & analysis

I Automatic instrumentation
I Summary analysis report examination
I PAPI hardware counter metrics

Trace measurement collection & analysis
I Filter determination, specification & configuration
I Automatic trace analysis report patterns

Manual and PDT instrumentation
Measurement configuration
Analysis report algebra

20 / 98

Scalasca summary: LU benchmark, class A, 32
processors

45.22% of the time spent in MPI point-to-point communication
21 / 98

Scalasca trace: LU benchmark, class A, 32
processors

2.57% of the execution time corresponds to late sender
22 / 98

Scalasca trace: LU benchmark, class A, 32
processors

16.08% of the execution time corresponds to wrong order situation
23 / 98

LU summary analysis result scoring

% scalasca -examine -s epik_lu_a_32_sum_...
...
Estimated aggregate size of event trace (total_tbc): 253721920 bytes
Estimated size of largest process trace (max_tbc): 9067400 bytes
(Hint: When tracing set ELG_BUFFER_SIZE > max_tbc to avoid
intermediate flushes
...

The estimated size of the traces is 242MB
The maximum trace buffer is around to 9MB per process

I If the available buffer is smaller than 9MB, then there will be bigger
perturbation because of flushes to the hard disk during the measurement

24 / 98

Scalasca trace: LU benchmark, comparison B-32

The different between the optimization flags -O and -O3

25 / 98

MPI Performance

MPI execution

Processes Class B Class C
8 93.7 203.64
16 124.56 439.52
32 201.12 482.3
64 311.44 649.68

Late sender

8 26.68 54.2
16 11.19 46.22
32 33.26 75.13
64 35.4 69.56

Wrong source order

8 9.54 17.87
16 31.26 110.9
32 38.36 96.46
64 72.24 142.69

26 / 98

Conclusions

As we increase the number of the processors that participate to the
execution, the Late Sender delay is becoming bigger and should be fixed
by applying a better load balancing on the computation part as some
processors finish faster than the others
Moreover the delay because of the difference of sources is increasing
and the proposed ways to be fixed are by changing the sequence of the
MPI_Recv calls or use the MPI_ANY_SOURCE

27 / 98

TAU Performance System

TAU

28 / 98

TAU Performance System

Performance profiling and tracing
Instrumentation, measurement, analysis, visualization
Performance data management and data mining
TAU can automatically instrument your source code through PDT for
routines, loops, I/O, memory, phases, etc.

29 / 98

Direct Instrumentation Options in TAU

Source code Instrumentation
I Manual instrumentation
I Automatic instrumentation (PDT)
I Compiler generates instrumented object code

Library level instrumentation
Runtime pre-loading and interception of library calls
Binary code instrumentation

I Rewrite the binary, runtime instrumentation

30 / 98

Instrumentation, re-writing Binaries with MAQAO
(beta)
Important

Instrument:
% tau_rewrite lu.A.4 -T papi,pdt -o lu.A.4.inst

Paraprof:

31 / 98

Call graph

32 / 98

Paraprof

33 / 98

Paraprof II

34 / 98

3D Visualization, time, total instructions

Study the total instructions per function

35 / 98

Communication matrix display, function BLTS

36 / 98

View traces from the Jumpshot tool

37 / 98

Connection between various tools

38 / 98

Compare the duration of the functions while we
increase the number of the processes (LU-B)

While we double the number of the processes the duration of the RHS
function is decreased by 49.273%

39 / 98

Compare the total instructions of the functions while
we increase the number of the processes (LU-B)

While we double the number of the processes the total instructions of the
RHS function is decreased by 49.853%

40 / 98

Compare the duration of the functions for the rank 0
(LU-B)

While we double the number of the processes the duration of the RHS
function is decreased by 48.685%

41 / 98

PerfExplorer, Total Execution Time for class B

42 / 98

PerfExplorer, Relative Efficiency by Event for class B
(Time)

43 / 98

PerfExplorer, Relative Speedup by Event for class B
(Time)

44 / 98

PerfExplorer, Runtime Breakdown for class B (Time)

45 / 98

PerfExplorer, Instructions per Second for class B

46 / 98

PerfExplorer, Relative Efficiency by Event for class C
(Time)

47 / 98

PerfExplorer, Relative Efficiency by Event for class C
(Stalled Cycles)

48 / 98

PerfExplorer, Instructions per Second for class C

49 / 98

Paraprof and dynamic phases for the LU benchmark,
class B, 8 processes

50 / 98

Profile of a phase

We chose randomly the 112th iteration of the function RHS
51 / 98

Study the phase

We can observe that for the 112th iteration the variation of the total
instructions is 8.33%

52 / 98

Study the phase II

We can observe that for the 112th iteration the variation of the
instructions per second is 6.4%

53 / 98

Conclusions

The characteristics of a function can vary across different iteration
The metric of the stalled cycles on any resource is a good initial metric for
identifying overhead but seems not to be enough
The class B scales better on 16 processes and more
Similar the class C for 32 processes

54 / 98

PerfExpert

55 / 98

PerfExpert tool

Not only measures but also analyses performance
I Tell us where the slow code sections are as well why they perform poorly
I Suggests source-code changes (unfortunately only for icc compiler for now)
I Simple to use

56 / 98

PerfExpert tool

Identification of potential causes for slow speed
I We can find a lot of information through various tools

How can we decide if a value is big or not?
I There are 25,578,391 L2 cache misses in a loop, is it good?
I How can we reduce it?

57 / 98

PerfExpert tool

It uses the HPCToolkit
It executes the application many times for measuring various metrics
In every execution the total completed instructions are measured in order
to be able to compare the different execution in the case of any variation
It identifies and characterizes the causes of each bottleneck in each code
segment
Local Cycles Per Instruction (LCPI) introduced

58 / 98

PerfExpert tool

During the installation, PerfExpert measures various architecture
parameters, L1 data access latency etc.
The LCPI values are a combination of PAPI metrics and architecture
parameters

59 / 98

Local Cycles Per Instruction

Data Accesses, L1 data hits
(PAPI_LD_INS * L1_dlat) / PAPI_TOT_INS

Data Accesses, L2 data misses
((PAPI_L2_TCM - PAPI_L2_ICM) * mem_lat) / PAPI_TOT_INS

Instruction Accesses, L2 instruction misses
PAPI_L2_ICM * mem_lat / PAPI_TOT_INS

60 / 98

Output

Function rhs_() (25.8% of the total runtime)
===
ratio to total instrns % 0.........25...........50.........75........100

- floating point : 54 *************************
- data accesses : 37 ******************

performance assessment LCPI good......okay......fair......poor......bad....

* overall : 1.1 >>>>>>>>>>>>>>>>>>>>>>>
upper bound estimates

* data accesses : 1.4 >>>>>>>>>>>>>>>>>>>>>>
- L1d hits : 0.7 >>>>>>>>>>>>>>
- L2d hits : 0.7 >>>>>>>>>>>>>>
- L2d misses : 0.0 >

* instruction accesses : 0.3 >>>>>>>
- L1i hits : 0.3 >>>>>>>
- L2i hits : 0.0 >
- L2i misses : 0.0 >

* data TLB : 0.0 >

* instruction TLB : 0.0 >

* branch instructions : 0.1 >>
- correctly predicted : 0.1 >>
- mispredicted : 0.0 >

61 / 98

AutoSCOPE

Status
I Know that there is a performance problem
I Know why it performs poorly
I Do not know how to improve the performance

AutoSCOPE
I Suggests remedies based on analysis results

F Including code examples and compiler flags
F For the moment only for Intel compiler (soon for gcc?)

62 / 98

Use AutoSCOPE

Call the autoscope
% autoscope output_lu_a_4
Function rhs_() (19.4% of the total runtime)
===

* eliminate floating-point operations through distributivity
- example: d[i] = a[i] * b[i] + a[i] * c[i]; ->

d[i] = a[i] * (b[i] + c[i]);

* eliminate floating-point operations through associativity
- example:d[i]=(a[i] * b[i]) * c[i]; y[i] = (x[i] * a[i]) * b[i];->

temp = a[i] * b[i]; d[i] = temp * c[i]; y[i] = x[i] * temp;

* use trace scheduling to reduce the branch taken frequency
- example: if (likely_condition) f(); else g(); h(); ->
void s() {g(); h();} ... if (!likely_condition) {s();} f(); h();

63 / 98

AutoSCOPE
* factor out common code into subroutines
- example: ... same_code ... same_code ... ->
void f() {same_code;} ... f() ... f() ...;

* allow inlining only for subroutines with one call site or very short
bodies
- compiler flag: use the "-nolib-inline", "-fno-inline",
"-fno-inline-functions", or "-finline-limit=" (with a small) compiler
flags

* make subroutines more general and use them more
- example: void f() {statements1; same_code;}

void g() {statements2; same_code;} ->
void fg(int flag) {if (flag) {statements1;} else {statements2;}
same_code;}

* split off cold code into separate subroutines and place them at the
end of the source file
- example: if (unlikely_condition) {lots_of_code} ->
void f() {lots_of_code} ... if (unlikely_condition) f();

* reduce the code size
- compiler flag: use the "-Os" or "-O1" compiler flag

64 / 98

AutoSCOPE for the loop of RHS function

Loop in function rhs_() (19.4% of the total runtime)
==

* move loop invariant computations out of loop
- example: loop i {x = x + a * b * c[i];} ->
temp = a * b; loop i {x = x + temp * c[i];}

* lower the loop unroll factor
- example: loop i step 4 {code_i; code_i+1; code_i+2; code_i+3;} ->

loop i step 2 {code_i; code_i+1;}
- compiler flag: use the "-no-unroll-aggressive" compiler flag

65 / 98

Score-P - A Joint Performance
Measurement Run-Time

Infrastructure for Periscope,
Scalasca, TAU and Vampir

66 / 98

Why a new tool?

Several performance tools co-exist
Different measurement systems and output format
Complementary features and overlapping functionality
Redundant effort for development and maintenance
Limited or expensive interoperability
Complications for user experience, support, training

67 / 98

Idea

Common infrastructure and effort
Common data formats OTF2 and CUBE4
Sharing ideas and implement faster
No effort for maintenance, testing etc for various tools
Single learning curve

68 / 98

Score-P Architecture

69 / 98

Components

Separate, stand-alone packages
Common functionality factored out
Automated builds and tests

70 / 98

The Open Trace Format Version 2 (OTF2)

Event trace data format
I Event record types +

definition record types

Multi-file format
I Anchor file
I Global and local

definitions + mappings
I Event files

OTF2 API

71 / 98

Re-design OTF2

One process/thread per file
Memory event trace buffer becomes part of trace format
No re-write for unification, mapping tables
Forward/Backward reading

72 / 98

Selective Tracing

Score-P allows to disable the instrumentation on specific parts of the
code (SCOREP_RECORDING_OFF/ON)
It allows online access for handling the data on the fly for profiling mode
Parameters profiling, we can split-up the callpath for executions of
different parameter values (INT64, UINT64, String)

73 / 98

Performance Analysis of Iterative
Methods (PAIM)

74 / 98

Why another one tool?

The previous tools do not provide analytical information about the
iterative methods
One of the possible workloads of a scientific application is a loop, thus its
behaviour should be studied further
Think about an idea and implement it

75 / 98

Plotting all the iterations for the function SSOR
(Computation time in ms)

76 / 98

Plotting all the iterations for the function SSOR
(MPI_Send duration in ms)

77 / 98

Local Dynamic Phases

APPLU [{lu.f} {46,7}-{166,9}] => SSOR [{ssor.f} {4,7}-{250,9}]
=> ssor [2] => RHS [{rhs.f} {5,7}-{506,9}]

-> RHS [2]

What if a function is called more than once by SSOR
APPLU [{lu.f} {46,7}-{166,9}] => SSOR [{ssor.f} {4,7}-{250,9}]
=> ssor [2] => JACU [{jacu.f} {5,7}-{384,9}]

I Analytical iterations: Execute again the benchmark and create the jacu [i]
dynamic phases

I Local iterations: Aggregate the iterations to just one iteration per SSOR
iteration

78 / 98

Plotting the local iterations for the function JACU
(Time in ms)

79 / 98

Plotting the local iterations for the function JACU (Total
Instructions)

This feature is called “per metric”, all the ranks per metric are included in
one plot

80 / 98

Plotting the local iterations for the function SSOR
(MPI_Send duration in ms)

81 / 98

Plotting the iterations for the function RHS (Time in
ms)

82 / 98

Comparing the instructions per second, for each
function on rank 0

Necessary to use different power rate for each function during the
simulation

83 / 98

Comparing the instructions per second, for each
function on rank 2

Different power rate also across different processes

84 / 98

Comparing the total instructions, for each function on
rank 0

Function BUTS constitutes by almost 30% less total instructions than the
function RHS

85 / 98

Comparing the execution time for the computation
parts, for each function on rank 0 (Time in ms)

Function BUTS is almost 13% slower than function RHS

86 / 98

Comparing the stalled cycles on any resource, for
each function on rank 0

Functions BUTS and RHS have almost the same number of stalled
cycles on any resource

87 / 98

Comparing the L1 data accesses on any resource, for
each function on rank 0

Function BUTS has almost 18% more L1 data accesses than function
RHS

88 / 98

Scaling - LU benchmark, class B, for each function on
rank 0 (Total Instructions)

Increasing the number of the processes by two, the total instructions are
almost divided by two.

89 / 98

Scaling - LU benchmark, class B, zoom for 0-50 and
200-250 iterations (Total Instructions)

90 / 98

Scaling different instances (Time in ms)

The workload is increasing by almost four times.

91 / 98

Actions between performance data

92 / 98

Use statistics in the case of many processes

93 / 98

Using the optimization flag -O3

94 / 98

Compare five executions of the same instance

95 / 98

Accuracy: SkaMPI vs TAU vs Score-P

Score-P provides less overhead compared to TAU

96 / 98

Decreasing the overhead of the instrumentation
Apply selective instrumentation for capturing only MPI events with PAPI
without any info for the computation

BEGIN_FILE_EXCLUDE_LIST

*
END_FILE_EXCLUDE_LIST

97 / 98

Thank you!
Questions?

98 / 98

	Context and motivation
	Introduction to Performance Engineering
	Performance Application Programming Interface
	Scalasca
	TAU
	PerfExpert
	Score-P
	Performance Analysis of Iterative Methods (PAIM)
	Discuss about accuracy

