
Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Assessing the Performance of MPI
Applications Through Time-Independent Trace

Replay

F. Desprez1 G. Markomanolis1 M. Quinson2 F. Suter3

1INRIA, LIP, ENS de Lyon,
Lyon, France

2Nancy University, LORIA, INRIA,
Nancy, France

3Computing Center, CNRS, IN2P3,
Lyon-Villeurbanne, France

Avalon working group 24/01/2011



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Outline

1 Introduction
2 Contribution
3 Time-Independent Trace Format
4 Trace Acquisition Process

Instrumentation
Execution
Post-processing of the Execution Traces

5 Trace Replay with SimGrid
6 Experimental Evaluation

Experimental Setup
Evaluation of the Acquisition Modes
Analysis of Trace Sizes
Accuracy of Time-Independent Trace Replay
Acquiring a Large Trace
Simulation Time



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Introduction

Dimensioning of compute clusters
Simulation Frameworks:

off-line simulation
replay an execution trace
timed traces

on-line simulation
a part of the application is simulated

The current framework follows the off-line approach



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Contribution

1 Time-independent trace format
2 Decouple the acquisition of the trace from its replay
3 A trace replay tool
4 Experimental results that show the simulation accuracy, the

acquisition time, the simulation time, and the trace size



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Time-Independent Trace Format

Format: id, type, volume/parameters related to the action

for (i=0; i<4; i++){
if (myId == 0){
/* Compute 1Mflop */
MPI_Send(..., (myId+1));
MPI_Recv(...);
} else {
MPI_Recv(...);
/* Compute 1Mflop */
MPI_Send(..., (myId+1)% nproc);
}
}

p0 compute 1e6
p0 send p1 1e6
p0 recv p3

p1 recv p0
p1 compute 1e6
p1 send p2 1e6

p2 recv p1
p2 compute 1e6
p2 send p3 1e6

p3 recv p2
p3 compute 1e6
p3 send p0 1e6



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Supported Functions

MPI actions Trace entry
CPU burst <id> compute <volume>

MPI_Send <id> send <dst_id> <volume>
MPI_Isend <id> Isend <dst_id> <volume>
MPI_Recv <id> recv <src_id> <volume>
MPI_Irecv <id> Irecv <src_id> <volume>

MPI_Broadcast <id> bcast <volume>
MPI_Reduce <id> reduce <vcomm> <vcomp>

MPI_Allreduce <id> allReduce <vcomm> <vcomp>
MPI_Barrier <id> barrier

MPI_Comm_size <id> comm_size #proc
MPI_Wait <id> wait



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Trace Acquisition Process

Time
Independent

Traces

Extraction GatheringExecutionInstrumentation

Execution

Traces

Instrumented

Version
Application

SG_process0.trace

SG_process1.trace

SG_processN.trace

tautrace.0.0.trc

tautrace.1.0.trc

tautrace.N.0.trc

Site 1 Site2



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Instrumentation

Instrumentation

Program Database Toolkit (PDT):
source level instrumentation

TAU Performance System is a profiling and tracing tookit:
Using PDT
Record every MPI message
Measuring the hardware counters through the PAPI interface
(PAPI_FP_OPS)
Selective instrumentation



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Instrumentation

Selective Instrumentation

Declare a list with the functions that should be instrumented or
not
Use TAU instrumentation API:

1 call TAU_ENABLE_INSTRUMENTATION()
2 call ssor(itmax)
3 call TAU_DISABLE_INSTRUMENTATION()



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Execution

Acquisition modes

Regular mode: one process per CPU
Need many CPUs for large instances

Folding mode: more than one process per CPU
Limited scalability by the available memory

Scattering mode: the CPUs do not necessarily belong to the
same cluster

Many nodes available
Easier to acquire the traces when a lot of resources of some
clusters are not available
The execution time depends on many factors

Scattering and Folding: the combination of Folding and
Scattering mode
The trace remains the same for all the modes



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Post-processing of the Execution Traces

Post-processing of the Execution Traces

After the execution of an instrumented application, there are:
trace files
event files

Example of event file:

49 MPI 0 "MPI_Send() " EntryExit
1 TAUEVENT 1 "PAPI_FP_OPS" TriggerValue

Need to:
Extract a time-independent trace from the trace and event files
Gather the extracted traces on a single node



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Post-processing of the Execution Traces

Tau2SimGrid I

A C/MPI parallel application, called tau2simgrid:
Using TAU Trace Format Reader library
No communication between different processes
Handling all the execution modes
Each process creates its own file independently from the other
ones
During the execution there is no need to read a trace file many
times even for non blocking MPI commands



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Post-processing of the Execution Traces

Tau2SimGrid II

Example:

1 0 1.42947e+06 EnterState 49
1 0 1.42947e+06 EventTrigger 1 164035532
1 0 1.4295e+06 EventTrigger 46 163840
1 0 1.4295e+06 SendMessage 0 0 163840 1 0
1 0 1.4299e+06 EventTrigger 1 164035624
1 0 1.4299e+06 LeaveState 49

Time independent trace:

p1 send p0 163840



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Post-processing of the Execution Traces

Gathering the traces

GatherSimGrid:
K-nomial tree reduction
log(K+1) N steps, where N is the total number of files, and K is
the arity of the tree

SG_process0.trace SG_process1.trace

Node 0

SG_process0−3.traces

Node 0

SG_process0−11.traces

Node 0

SG_processN−1.trace

Node N−4

SG_process(N−12)−(N−1).traces

Node N−12

SG_process(N−4)−(N−1).traces

SG_process0−(N−1).traces



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Trace Replay with SimGrid

Inputs and outputs of the SIMGrid trace replay framework

Simulation Kernel

Profile
Timed

Trace

Platform

Topology

Application

Deployment

Simulated Execution Time

Time−Independent Trace(s)

Trace ReplayTool



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Platform file

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="3">
<AS id="AS_mysite" routing="Full">
<cluster id="AS_mycluster"

prefix="mycluster-" suffix=".mysite.fr"
radical="0-3" power="1.17E9"
bw="1.25E8" lat="16.67E-6"
bb_bw="1.25E9" bb_lat="16.67E-6"/>

</AS>
</platform>



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Deployment file

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="3">

<process host="mycluster-0.mysite.fr"
function="p0"/>

<process host="mycluster-1.mysite.fr"
function="p1"/>

<process host="mycluster-2.mysite.fr"
function="p2"/>

<process host="mycluster-3.mysite.fr"
function="p3"/>

</platform>



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Trace replay tool

Using MSG API:
1 A function for every action, for instance:

1 static void compute(xbt_dynar_t action){
2 char *amount = xbt_dynar_get_as(action,
3 2, char *);
4 m_task_t task = MSG_task_create(NULL,
5 parse_double(amount),
6 0, NULL);
7 MSG_task_execute(task);
8 MSG_task_destroy(task);
9 }

2 Register the function:
MSG_action_register("compute", compute);

3 Call the function MSG_action_trace_run

<process host="mycluster-0.mysite.fr" function="p0">
<argument value="SG_process0.trace"/>
</process>



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Calibration I

Computation:
Execute a small instrumented instance of the target application
Determine the number of flops of each event and the time spent to
compute them
Compute the flop rate for every event
Compute a weighted average of the flop rates for each process
Compute the average flop rate for all the process set
Compute an average over these five runs

Bandwidth: We use the nominal value of the links



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Calibration II

Latency:
Executing Pingpong_Send_Recv experiment of SkaMPI
benchmark
Divide the value obtained for a 1-byte message by six

Piece-wise linear model used by SIMGrid dedicated to MPI
communications:

Latency and bandwidth correction factors



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Experimental Setup

Benchmarks, Clusters

NAS Parallel Benchmarks (NPB):
We use the LU factorization (LU) program
We have 7 different classes, denoting different problem sizes: S
(the smallest), W, A, B, C, D, and E (the largest)

Clusters:
Bordereau: 93 2.6GHz Dual-Proc, Dual-Core AMD Opteron 2218
nodes. Single 10 Gigabit switch
Gdx: 86 2.0 GHz Dual-Proc AMD Opteron 246 scattered across
18 cabinets
These two clusters are interconnected through a dedicated 10
Gigabit network



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Experimental Setup

Software

One of the key concept of the Grid’5000 experimental platform is to
offer its users the capacity to deploy their own system image at will

Debian Lenny image:
Kernel (v2.6.25.9)
Perfctr driver (v2.6.38)
TAU (v2.18.3)
PDT (v3.14.1)
PAPI (v3.7.0)
NAS Parallel Benchmarks (v3.3)
OpenMPI (v1.3.3)
SIMGrid (v3.6-r9069)



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Evaluation of the Acquisition Modes

Acquisition time

Application
Tracing overhead

Extraction
Gathering

0

100

200

300

400

500

600

8 16 32 64 8 16 32 64

Ti
m

e
(in

se
co

nd
s)

NPB LU instances
CB

The wrost value for the percentage of extraction and gathering
steps is 34.91% for class B, 64 processes
Many “what-if” sceranrios can be applied with one acquisition



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Evaluation of the Acquisition Modes

Evolution of the execution time

Evolution of the execution time of an instrumented LU benchmark
executed by 64 processes with regard to the acquisition mode

Acquisition mode R F-2 F-4 F-8 F-16 F-32 S-2 SF-(2,2) SF-(2,4) SF-(2,8) SF-(2,16)
Number of nodes 64 32 16 8 4 2 (32,32) (16,16) (8,8) (4,4) (2,2)

B Execution Time (in sec.) 20.73 52.96 88.66 179.07 347.27 689.18 37.54 79.19 134.05 277.25 505.64
Ratio to regular mode 1 2.55 4.28 8.64 16.75 33.25 1.81 3.82 6.47 13.37 24.39

C Execution Time (in sec.) 57.77 143.45 272.45 511.75 1,011.59 1,970.05 85.71 211.95 421.71 772.56 1,442.79
Ratio to regular mode 1 2.22 4.13 7.79 15.14 31.79 1.48 3.67 7.3 13.37 24.97

The time needed to execute the instrumented application
increases roughly linearly with the folding factor
During the Scattering the overhead comes from the wide area
network and the progression of the execution depends on the
slowest cluster
Same simulated time for all the acquisition modes with variations
less than 1%



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Analysis of Trace Sizes

Analysis of Trace Sizes

Trace size in MiB

#Processes TAU Time TAU
SIMGrid

#Actions
Independent (in millions)

C
la

ss
B 8 320.2 29.9 10.71 2.03

16 716.5 72.6 9.87 4.87
32 1,509 161.3 9.36 10.55
64 3,166.1 344.9 9.18 22.73

C
la

ss
C 8 508.2 48.4 10.5 3.23

16 1,136.5 117 9.71 7.75
32 2,393 256.8 9.32 16.79
64 5,026.1 552.5 9.1 36.17



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Accuracy of Time-Independent Trace Replay

Accuracy of Time-Independent Trace Replay

Class B - Execution time
Class B - Simulated time
Class C - Execution time
Class C - Simulated time

0

50

100

150

200

250

300

350

400

8 16 32 64

Ti
m

e
(in

se
co

nd
s)

Number of processes

The local relative error may be quite high (up to 51.5% for Class
B on 64 processes) and not constant
Trends are correctly predicted



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Acquiring a Large Trace

Acquiring a Large Trace

Executing the acquisition process on the bordereau cluster for a
Class D instance executed on 1,024 processes
We only use 32 nodes, 128 individual cores, and a folding factor
of 8
Less than 25 minutes to acquire (including extraction and
gathering) the time-independent trace
Its size is 32.5 GiB, which is 7.8 times smaller than the TAU
trace (252.5 GiB)



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Simulation Time

Simulation Time

Class B
Class C

0

50

100

150

200

250

300

350

400

8 16 32 64

S
im

ul
at

io
n

tim
e

(in
se

co
nd

s)

Number of processes

The speed of simulating actions is around to 94205
actions/second
Linear with the number of processes



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Conclusion and Future Work

Conclusion
Time-independent traces for the off-line simulation of MPI
applications
Tools for our Framework:

TAU is a well known profiling tool since 1997
SIMGrid, validaded simulator

Some issues have to be solved
Future Work

Solve the accuracy and simulation time issues
We also aim at exploring techniques to reduce the size of the
traces
Compare off-line simulations results with those produced by
on-line simulators



Introduction Contribution Time-Independent Trace Format Trace Acquisition Process Trace Replay with SimGrid Experimental Evaluation Conclusion and Future Work

Thank you!
Questions?


	Introduction
	Contribution
	Time-Independent Trace Format
	Trace Acquisition Process
	Instrumentation
	Execution
	Post-processing of the Execution Traces

	Trace Replay with SimGrid
	Experimental Evaluation
	Experimental Setup
	Evaluation of the Acquisition Modes
	Analysis of Trace Sizes
	Accuracy of Time-Independent Trace Replay
	Acquiring a Large Trace
	Simulation Time

	Conclusion and Future Work

