Assessing the Performance of Large MPI Applications Instances Through Time-Independent Traces

F. Desprez¹ G. Markomanolis¹ F. Suter²

¹INRIA, LIP, Avalon, ENS de Lyon ²IN2P3 Computing Center, CNRS, IN2P3, Avalon

Grid'5000 Winter School Nantes, 2012

Context and motivation

Context

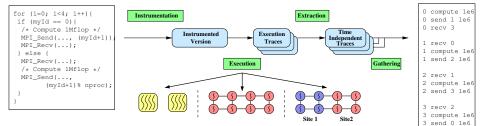
- Simulation: popular approach to get objective performance indicators
- May help the dimensioning of compute clusters
- Two complementary approaches
 - On-line: execute the application with some simulated parts
 - Off-line: replay an execution trace

Motivation

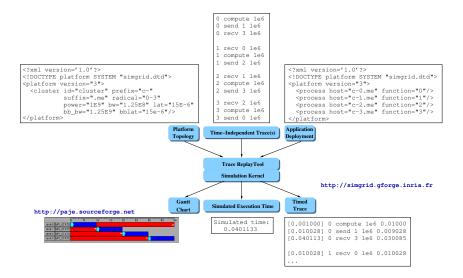
- Off-line simulation usually based on timed traces
 - Link trace to acquisition
- Proposition: get rid off the timestamps
 - Decouple acquisition from actual replay
- Target: regular data-independent MPI applications

Outline

- 2 Time-Independent Trace Format
- Trace Acquisition Process
- 4 Trace Replay with SimGrid
- 5 Grid'5000 Issues
- 6 Large MPI Application Instances
- Conclusion and Future Work


Time-Independent Trace Format

```
for (i=0; i<4; i++) {
    if (myId == 0) {
        /* Compute 1M instructions */
        MPI_Send(1MB,..., (myId+1));
        MPI_Recv(...);
        else {
            MPI_Recv(...);
            /* Compute 1M instructions */
            MPI_Send(1MB,..., (myId+1)% nproc);
        }
}</pre>
```


- List of actions performed by each process
- Each action is constituted by:
 - id of the process
 - type, e.g., computation or communication
 - volume in instructions or bytes
 - action specific parameters

```
0 compute 1e6
 send 1 1e6
0
0 recv 3 1e6
1 recv 0 1e6
1 compute 1e6
1 send 2 1e6
2 recv 1 1e6
2 compute 1e6
2 send 3 1e6
3 recv 2 1e6
3 compute 1e6
3 send 0 1e6
```

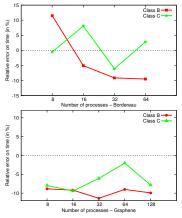
Trace Acquisition Process

Trace Replay with SimGrid

Main issue: Calibration

Platform file : instructions per second of the CPU, latency, bandwidth

• These values are needed for accurate performance predictions

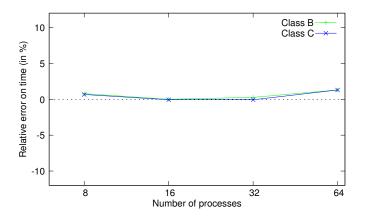

Computation

- Execute a small instrumented instance of the target application
- Compute the instruction rate for every event
- Compute a weighted average of the instruction rates for each process
- Compute the average instructions rate for all the process set
- Compute an average over these five runs

Communication

- Bandwidth: We use the nominal value of the links
- SkaMPI for measuring the latency
- Piece-wise linear model used by SIMGrid dedicated to MPI communications:
 - Latency and bandwidth correction factors

Simulation Accuracy



- Greater accuracy
 - Roughly in a [-10%; +10%] interval
 - Impact of all modifications
- Decreasing trend for Class B
 - Small messages are underestimated
 - Time to copy data in memory
- On Graphene cluster
 - Results even more stable
 - in a [-11.4%; -2%] interval
 - General underestimation
 - Due to small messages

- General conclusions
 - Simple modifications ⇒ Great improvement! (10% more accurate)
 ⇒ Performance prediction is possible new!

Simulation Accuracy

EP benchmark, Bordereau cluster

The worst relative error for EP is 1.3%

Outline

- Context and motivation
- 2 Time-Independent Trace Format
- Trace Acquisition Process
- 4 Trace Replay with SimGrid

5 Grid'5000 Issues

- Faulty Nodes
- Grid'5000 API
- 6 Large MPI Application Instances
 - Conclusion and Future Work

Trusting the Hardware

- Are the results correct?
- Is there any faulty node?

Script for identifying faulty nodes (at least some)

- Give a machine file as input
 - Extract one machine file per cluster
 - Execute the LU-B benchmark (example for 50 nodes):
 - Create one machine file with the the first 32 nodes
 - Create a second one machine file with the last 32 nodes
 - Create a third machine file with the 18 last nodes + 14 first nodes
 - Compare the relative difference of the timings
 - Adaptive value of what we mean "error"
 - If there is any machine file with a faulty node, repeat the procedure on this specific machine file
 - If some faulty nodes are found, remove them from the initial machine file
- More ideas to be implemented

Real case, Sophia site

Executing LU-B-16: First machine file: 22.97 seconds Second machine file: 49.37 seconds Identified faulty nodes: suno-5 or suno-45

Real case, Bordeaux site

Executing LU-B-32: First machine file: 20.41 seconds Second machine file: 23.67 seconds Third machine file: 24.97 seconds Identified faulty node: bordereau-72

Trusting the Hardware

- Can we identify easily nodes with faulty memory?
- MPI application and node with faulty memory
- Memtester?
 - Needs more than 1.5 hour for testing 48GB of memory

Script for identifying nodes with faulty memory (at least some)

- Choose one node of each cluster
- Calibrate how many MPI processes of a hello world application can be executed on a node
- TakTuk + 1 mpirun per node, per cluster with almost full memory
- If the node prints its hostname, then it works, ortherwise is crashed because of faulty memory or non homogeneous characteristics

Identified node: Stremi-19 (error on 17-18th memory dimm)

- Known issue according to other users/admins
- Grid'5000 API does not always give correct results to the requests
- According to Grid'5000 API the node bordereau-18 has 4 GB of memory while it has 2 GB.
- Using TakTuk in order to extract information about the nodes is more safe
- This is important as we reconstruct the machine file according to the available memory of a node

Non homogeneous nodes: Bordereau-18, Genepi-34

Outline

- Context and motivation
- 2 Time-Independent Trace Format
- Trace Acquisition Process
- 4 Trace Replay with SimGrid
- 5 Grid'5000 Issues
- Large MPI Application Instances
 Folding Mode
 Scenarios

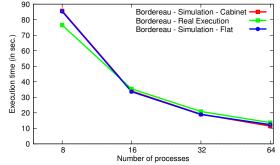
- Choose a node with a lot of memory (*stremi* cluster, 48GB memory, using 24 cores)
- Testing EP benchmark, classes B,C,D for 2048 MPI processes

			Time in seconds						
ass	#Processes		TAU	Scalas	sca	Score	ə-P	Manual Instrumentation	on
3	2048		Х	134.	2	8000		50	
2	2048		Х	169)	Х		76.25	
D	2048		Х	650)	Х		598	
Maximum memory in GB									
#Processes		TAI	J Sc	calasca S		ore-P	Manual Instrumentation		
2048		X		20.1	2	23.6		16	
	3	3 2048 2 2048 2 2048 2 2048 #Processes	3 2048 2 2048 0 2048 #Processes TA	3 2048 X C 2048 X D 2048 X #Processes TAU Sc	3 2048 X 134. C 2048 X 169 O 2048 X 650 #Processes TAU Scalasca	3 2048 X 134.2 C 2048 X 169 D 2048 X 650 Maximu #Processes TAU Scalasca Sc	ass #Processes TAU Scalasca Score 3 2048 X 134.2 800 C 2048 X 169 X D 2048 X 650 X #Processes TAU Scalasca Score-P	Ass #Processes TAU Scalasca Score-P 3 2048 X 134.2 8000 C 2048 X 169 X D 2048 X 650 X #Processes TAU Scalasca Score-P Maximum memory in the score of	Ass #Processes TAU Scalasca Score-P Manual Instrumentation 3 2048 X 134.2 8000 50 2 2048 X 169 X 76.25 2 2048 X 650 X 598 #Processes TAU Scalasca Score-P Manual Instrumentation

- We can acquire the traces for 2048 nodes just from one node
- TAU needs much more memory than the other tools
- Score-P needs too much time for synchronization issues and unification of the traces

• Testing LU benchmark, instances B-256, C-1024, D-256

		Time in seconds						
Class	Class #Processes		Scalasca	Score-P	Modified MPE			
В	256	170	124.2	110.5	112			
С	1024	Х	976	1637.5	775			
D	256	Х	3312	Х	2843			
		Maximum memory in GB						
				пп плетногу п	ПGB			
Class	#Processes	TAU	Scalasca	Score-P	Modified MPE			
Class B	#Processes 256	TAU 21.4						
		-	Scalasca	Score-P	Modified MPE			


• What is the modified MPE?

Modified MPE

- Why a "new" tool?
 - The most of the well known tool do not consider the folding mode as a use case
 - Some of the issues:
 - A lot of memory needed
 - Slow to save files when a core handles a lot of traces
 - Is it a solution? (work under progress)
 - The MPE tool produces actions according to the TIT format
 - Added support for some PMPI calls, like PMPI_Irecv with ANY_SOURCE
 - Added PAPI support for the compute actions
 - The traces are already in TIT format
 - TODO:
 - Selective instrumentation
 - Validate and solve issues with the value of the total instructions

Scenario I

- What if the *bordereau* cluster had the same topology with *graphene*?
- LU benchmark, class B

- Bordereau: AMD Opteron 2218, 2.6 GHz, 1MB L2 cache per core
- Graphene: Intel Xeon x3440, 2.53 GHz, 2MB L2 cache per core
- Cabinet1: 1-39, Cabinet2: 40-74 processors
- Bordereau cluster behaves better with the original topology till 32 nodes
- For the B-64 instance, the size of the messages belong to the interval of the piece-wise model that graphene has higher bandwidth and only 1% of the messages are bigger than 64 KB

Scenario II

- We want to use as many resources possible and acquire the biggest instance for the LU benchmark with the TAU tool
- Reservation: 778 nodes, 9 sites (except Lille), 18 clusters
- Create a machine file according to the nodes' memory size
- Class D, 4096 MPI processes

Results

Execution time: 1564 seconds TAU traces size: 420 GB Converting to TIT traces: 42 seconds (using 778 hard disks) TIT traces size: 209GB Gathering time: 245 seconds (compressed files)

Scenario III

- We want to execute LU benchmark, class E
- Reservation: 778 nodes, 9 sites (except Lille), 18 clusters
- Create a machine file according to the nodes' memory size
- 16384 MPI processes
- TAU fails, SCORE-P never finishes (cacelled after 34260 seconds), Scalasca issue with converting to TIT traces
- Using modified MPE

Results

Execution time: 4114 seconds Trace sizes: 1453 GB Gathering time: 969 seconds (compressed files)

- Execute a big instance of the EP benchmark
- Reservation: 778 nodes, 9 sites (except Lille), 18 clusters
- Class D, 32768 MPI processes
- Manual instrumentation

Results

Execution time: 123.38 seconds Trace sizes: 128 MB Gathering time: 27.2 seconds (compressed files)

 No luck to execute the instance D-65536, although we had reserved nodes with the needed memory (9 TB)

- Do we need another one tool for gathering files?
- 778 nodes, on 9 sites
- EP benchmark

		Time					
Class	#Processes	Kaget	Trace Gather	MB			
В	1024	7.7	20.5	4.1			
В	4096	8	21.89	27			
В	8192	12.1	22.64	36			
В	16384	12.3	26.57	68			

LU benchmark

Class	#Processes	Kaget	Trace Gather	Compressed	MB
С	256	127	77	12.2	3900
С	512	266	206	25.81	8100
С	1024	510	376	38	17000

• Kaget is efficient for small files but not for big ones (considering that we did not miss any advanced option)

Conclusion and Future Work

Conclusion

- · We used a lot of nodes in order to stress our tools
- We identified many issues
- Trust a machine before you use it
- A benchmark suite is needed for being able for a user to check the hardware any moment
- Stability of the nodes
- We can test many "what-if" scenarios
- Future Work
 - Handle memory copy time when sending small messages
 - Automate the calibration procedure
 - Assess performance of real MPI application
 - Check how to improve the discovery of faulty nodes

Thank you! Questions?