
Assessing the Performance of Large MPI
Applications Instances Through

Time-Independent Traces

F. Desprez1 G. Markomanolis1 F. Suter2

1INRIA, LIP, Avalon, ENS de Lyon 2IN2P3 Computing Center, CNRS, IN2P3, Avalon

Grid’5000 Winter School
Nantes, 2012

1 / 25

Context and motivation

Context
Simulation: popular approach to get objective performance
indicators
May help the dimensioning of compute clusters
Two complementary approaches

On-line: execute the application with some simulated parts
Off-line: replay an execution trace

Motivation
Off-line simulation usually based on timed traces

Link trace to acquisition

Proposition: get rid off the timestamps
Decouple acquisition from actual replay

Target: regular data-independent MPI applications

2 / 25

Outline

1 Context and motivation

2 Time-Independent Trace Format

3 Trace Acquisition Process

4 Trace Replay with SimGrid

5 Grid’5000 Issues

6 Large MPI Application Instances

7 Conclusion and Future Work

3 / 25

Time-Independent Trace Format

for (i=0; i<4; i++){
if (myId == 0){
/* Compute 1M instructions */
MPI_Send(1MB,..., (myId+1));
MPI_Recv(...);
} else {
MPI_Recv(...);
/* Compute 1M instructions */
MPI_Send(1MB,..., (myId+1)% nproc);
}
}

List of actions performed by each process
Each action is constituted by:

id of the process
type, e.g., computation or communication
volume in instructions or bytes
action specific parameters

0 compute 1e6
0 send 1 1e6
0 recv 3 1e6

1 recv 0 1e6
1 compute 1e6
1 send 2 1e6

2 recv 1 1e6
2 compute 1e6
2 send 3 1e6

3 recv 2 1e6
3 compute 1e6
3 send 0 1e6

4 / 25

Trace Acquisition Process

for (i=0; i<4; i++){
if (myId == 0){
/* Compute 1Mflop */
MPI_Send(..., (myId+1));
MPI_Recv(...);

} else {
MPI_Recv(...);
/* Compute 1Mflop */
MPI_Send(...,

(myId+1)% nproc);
}
}

Gathering

Site 1 Site2

Extraction

Execution

Traces

Execution

Instrumented

Version

Instrumentation

Time
Independent

Traces

0 compute 1e6
0 send 1 1e6
0 recv 3

1 recv 0
1 compute 1e6
1 send 2 1e6

2 recv 1
2 compute 1e6
2 send 3 1e6

3 recv 2
3 compute 1e6
3 send 0 1e6

5 / 25

Trace Replay with SimGrid

Simulation Kernel

Platform

Topology

Application

Deployment

Simulated Execution Time

Time−Independent Trace(s)

 power="1E9" bw="1.25E8" lat="15E−6"

 <cluster id="cluster" prefix="c−"

 suffix=".me" radical="0−3"

</platform>

<platform version="3">

<?xml version=’1.0’?>

 bb_bw="1.25E9" bblat="15e−6"/>

<!DOCTYPE platform SYSTEM "simgrid.dtd"> <!DOCTYPE platform SYSTEM "simgrid.dtd">

<platform version="3">

<?xml version=’1.0’?>

 <process host="c−0.me" function="0"/>

 <process host="c−1.me" function="1"/>

 <process host="c−2.me" function="2"/>

 <process host="c−3.me" function="3"/>

</platform>

Trace ReplayTool

0 compute 1e6

0 send 1 1e6

0 recv 3 1e6

1 recv 0 1e6

1 compute 1e6

1 send 2 1e6

2 recv 1 1e6

2 compute 1e6

2 send 3 1e6

3 recv 2 1e6

3 compute 1e6

3 send 0 1e6

Timed

Trace

[0.001000] 0 compute 1e6 0.01000

[0.010028] 0 send 1 1e6 0.009028

[0.040113] 0 recv 3 1e6 0.030085

[0.010028] 1 recv 0 1e6 0.010028

...

Gantt

Chart

http://simgrid.gforge.inria.fr

Simulated time:

0.0401133

http://paje.sourceforge.net

6 / 25

Main issue: Calibration

Platform file : instructions per second of the CPU, latency, bandwidth
These values are needed for accurate performance predictions

Computation

Execute a small instrumented instance of the target application

Compute the instruction rate for every event

Compute a weighted average of the instruction rates for each process

Compute the average instructions rate for all the process set

Compute an average over these five runs

Communication

Bandwidth: We use the nominal value of the links

SkaMPI for measuring the latency

Piece-wise linear model used by SIMGrid dedicated to MPI communications:

Latency and bandwidth correction factors

7 / 25

Simulation Accuracy

Class B
Class C

-15

-10

-5

0

5

10

15

8 16 32 64

R
el

at
iv

e
er

ro
ro

n
tim

e
(in

%
)

Number of processes – Bordereau

Class B
Class C

-10

-5

0

5

10

8 16 32 64 128

R
el

at
iv

e
er

ro
ro

n
tim

e
(in

%
)

Number of processes – Graphene

Greater accuracy
Roughly in a [-10%; +10%] interval
Impact of all modifications

Decreasing trend for Class B
Small messages are underestimated

Time to copy data in memory

On Graphene cluster
Results even more stable

in a [-11.4%; -2%] interval
General underestimation

Due to small messages

General conclusions
Simple modifications ⇒ Great improvement! (10% more accurate)

⇒ Performance prediction is possible now!

8 / 25

Simulation Accuracy

EP benchmark, Bordereau cluster

Class B
Class C

-10

-5

0

5

10

8 16 32 64

R
el

at
iv

e
er

ro
ro

n
tim

e
(in

%
)

Number of processes

The worst relative error for EP is 1.3%

9 / 25

Outline

1 Context and motivation

2 Time-Independent Trace Format

3 Trace Acquisition Process

4 Trace Replay with SimGrid

5 Grid’5000 Issues
Faulty Nodes
Grid’5000 API

6 Large MPI Application Instances

7 Conclusion and Future Work

10 / 25

Trusting the Hardware

Are the results correct?
Is there any faulty node?

Script for identifying faulty nodes (at least some)

Give a machine file as input
Extract one machine file per cluster
Execute the LU-B benchmark (example for 50 nodes):

Create one machine file with the the first 32 nodes
Create a second one machine file with the last 32 nodes
Create a third machine file with the 18 last nodes + 14 first nodes

Compare the relative difference of the timings
Adaptive value of what we mean “error”

If there is any machine file with a faulty node, repeat the procedure
on this specific machine file
If some faulty nodes are found, remove them from the initial
machine file

More ideas to be implemented

11 / 25

Trusting the Hardware

Real case, Sophia site

Executing LU-B-16:
First machine file: 22.97 seconds
Second machine file: 49.37 seconds
Identified faulty nodes: suno-5 or suno-45

Real case, Bordeaux site
Executing LU-B-32:
First machine file: 20.41 seconds
Second machine file: 23.67 seconds
Third machine file: 24.97 seconds
Identified faulty node: bordereau-72

12 / 25

Trusting the Hardware

Can we identify easily nodes with faulty memory?
MPI application and node with faulty memory
Memtester?

Needs more than 1.5 hour for testing 48GB of memory

Script for identifying nodes with faulty memory (at least some)

Choose one node of each cluster
Calibrate how many MPI processes of a hello world application
can be executed on a node
TakTuk + 1 mpirun per node, per cluster with almost full memory
If the node prints its hostname, then it works, ortherwise is
crashed because of faulty memory or non homogeneous
characteristics

Identified node: Stremi-19 (error on 17-18th memory dimm)

13 / 25

Trusting the Hardware

Known issue according to other users/admins
Grid’5000 API does not always give correct results to the
requests
According to Grid’5000 API the node bordereau-18 has 4 GB of
memory while it has 2 GB.
Using TakTuk in order to extract information about the nodes is
more safe
This is important as we reconstruct the machine file according to
the available memory of a node

Non homogeneous nodes: Bordereau-18, Genepi-34

14 / 25

Outline

1 Context and motivation

2 Time-Independent Trace Format

3 Trace Acquisition Process

4 Trace Replay with SimGrid

5 Grid’5000 Issues

6 Large MPI Application Instances
Folding Mode
Scenarios

7 Conclusion and Future Work

15 / 25

Folding mode

Choose a node with a lot of memory (stremi cluster, 48GB
memory, using 24 cores)
Testing EP benchmark, classes B,C,D for 2048 MPI processes

Time in seconds
Class #Processes TAU Scalasca Score-P Manual Instrumentation

B 2048 X 134.2 8000 50
C 2048 X 169 X 76.25
D 2048 X 650 X 598

Maximum memory in GB
#Processes TAU Scalasca Score-P Manual Instrumentation

2048 X 20.1 23.6 16

We can acquire the traces for 2048 nodes just from one node
TAU needs much more memory than the other tools
Score-P needs too much time for synchronization issues and
unification of the traces

16 / 25

Folding mode

Testing LU benchmark, instances B-256, C-1024, D-256
Time in seconds

Class #Processes TAU Scalasca Score-P Modified MPE
B 256 170 124.2 110.5 112
C 1024 X 976 1637.5 775
D 256 X 3312 X 2843

Maximum memory in GB
Class #Processes TAU Scalasca Score-P Modified MPE

B 256 21.4 2.8 5.2 1.65
C 1024 X 12.9 29.3 7.95
D 256 X 16.9 X 15.4

What is the modified MPE?

17 / 25

Modified MPE

Why a “new” tool?
The most of the well known tool do not consider the folding mode
as a use case
Some of the issues:

A lot of memory needed
Slow to save files when a core handles a lot of traces

Is it a solution? (work under progress)
The MPE tool produces actions according to the TIT format
Added support for some PMPI calls, like PMPI_Irecv with
ANY_SOURCE
Added PAPI support for the compute actions
The traces are already in TIT format

TODO:
Selective instrumentation
Validate and solve issues with the value of the total instructions

18 / 25

Scenario I

What if the bordereau cluster had the same topology with
graphene?
LU benchmark, class B

Bordereau - Simulation - Cabinet
Bordereau - Real Execution
Bordereau - Simulation - Flat

0

10

20

30

40

50

60

70

80

90

8 16 32 64

E
xe

cu
tio

n
tim

e
(in

se
c.

)

Number of processes

Bordereau: AMD Opteron 2218, 2.6 GHz, 1MB L2 cache per core
Graphene: Intel Xeon x3440, 2.53 GHz, 2MB L2 cache per core
Cabinet1: 1-39, Cabinet2: 40-74 processors
Bordereau cluster behaves better with the original topology till 32 nodes
For the B-64 instance, the size of the messages belong to the interval of
the piece-wise model that graphene has higher bandwidth and only 1%
of the messages are bigger than 64 KB

19 / 25

Scenario II

We want to use as many resources possible and acquire the
biggest instance for the LU benchmark with the TAU tool
Reservation: 778 nodes, 9 sites (except Lille), 18 clusters
Create a machine file according to the nodes’ memory size
Class D, 4096 MPI processes

Results
Execution time: 1564 seconds
TAU traces size: 420 GB
Converting to TIT traces: 42 seconds (using 778 hard disks)
TIT traces size: 209GB
Gathering time: 245 seconds (compressed files)

20 / 25

Scenario III

We want to execute LU benchmark, class E
Reservation: 778 nodes, 9 sites (except Lille), 18 clusters
Create a machine file according to the nodes’ memory size
16384 MPI processes
TAU fails, SCORE-P never finishes (cacelled after 34260
seconds), Scalasca issue with converting to TIT traces
Using modified MPE

Results
Execution time: 4114 seconds
Trace sizes: 1453 GB
Gathering time: 969 seconds (compressed files)

21 / 25

Scenario IV

Execute a big instance of the EP benchmark
Reservation: 778 nodes, 9 sites (except Lille), 18 clusters
Class D, 32768 MPI processes
Manual instrumentation

Results
Execution time: 123.38 seconds
Trace sizes: 128 MB
Gathering time: 27.2 seconds (compressed files)

No luck to execute the instance D-65536, although we had
reserved nodes with the needed memory (9 TB)

22 / 25

Gathering Traces

Do we need another one tool for gathering files?
778 nodes, on 9 sites
EP benchmark

Time in seconds
Class #Processes Kaget Trace Gather MB

B 1024 7.7 20.5 4.1
B 4096 8 21.89 27
B 8192 12.1 22.64 36
B 16384 12.3 26.57 68

LU benchmark
Time in seconds

Class #Processes Kaget Trace Gather Compressed MB
C 256 127 77 12.2 3900
C 512 266 206 25.81 8100
C 1024 510 376 38 17000

Kaget is efficient for small files but not for big ones (considering
that we did not miss any advanced option)

23 / 25

Conclusion and Future Work

Conclusion
We used a lot of nodes in order to stress our tools
We identified many issues
Trust a machine before you use it
A benchmark suite is needed for being able for a user to check the
hardware any moment
Stability of the nodes
We can test many “what-if” scenarios

Future Work
Handle memory copy time when sending small messages
Automate the calibration procedure
Assess performance of real MPI application
Check how to improve the discovery of faulty nodes

24 / 25

Thank you!
Questions?

25 / 25

	Context and motivation
	Time-Independent Trace Format
	Trace Acquisition Process
	Trace Replay with SimGrid
	Simulation Accuracy

	Grid'5000 Issues
	Faulty Nodes
	Grid'5000 API

	Large MPI Application Instances
	Folding Mode
	Scenarios

	Conclusion and Future Work

